

Template Version 1.2

Version 1.60 Page 1 of 17

DESIGN DOCUMENT

DSP/BIOS™ LINK

MMU Dynamic entry support (OMAP)

LNK 181 DES

Version 1.60

Page 2 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

This page has been intentionally left blank.

Page 3 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

This page has been intentionally left blank.

Page 5 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

TABLE OF CONTENTS

1 Introduction ... 7

1.1 Purpose & Scope ... 7

1.2 Terms & Abbreviations ... 7

1.3 References ... 7

1.4 Overview.. 7

2 Requirements ... 8

3 Assumptions... 8

4 Constraints ... 8

5 High Level Design... 8

5.1 Static entries .. 8

5.2 Dynamic entries .. 9

6 Design .. 9

6.1 Dynamic addition of entries in the TLB ..10

6.2 Deletion of entries ..10

7 API Usage... 12

8 Constants & Enumerations ... 13

9 API definition ... 14

9.1 Internal functions ...14

9.2 Exported API..16

Page 6 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

TABLE OF FIGURES

Error! No table of figures entries found.

Page 7 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

1 Introduction

1.1 Purpose & Scope
This document describes the design of MMU entries configuration dynamically for

DSP/BIOS™ LINK. The document is targeted at the development team of

DSP/BIOS™ LINK.

1.2 Terms & Abbreviations

DSPLINK DSP/BIOS™ LINK

MMU Memory Management Unit

FLT First Level Table

SLT Second Level Table

TLB Translation look-aside Buffer

TWL Table walking logic

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

<

� This is important information.

� This is additional information.

>

1.3 References
1. TRM OMAP3430 Multimedia Device Silicon Revision 1.0

1.4 Overview
MMU instances handle translation from virtual into physical addresses. Virtual

addresses are issued by the DSP subsystems to the MMU, which converts them into

physical addresses. These physical addresses correspond to actual memory resource.

MMU instances can be used dynamically or statically, in other words, MMU can be

managed by the MPU software or configured directly.

An MMU can be configured dynamically when a software subroutine writes translation

tables into the appropriate physical memory space. Translation tables are most likely

stored in external SDRAM.

This document provides a detailed description of translation table and the MMU

dynamic configuration driver design.

Page 8 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

2 Requirements
SR132.27: Support for dynamically creating DSP MMU entries on OMAP.

On OMAP devices (OMAP3530 and OMAP2530), it must be possible to use the

PROC_control API to dynamically add/delete DSP MMU entries. It must also be

possible to dynamically map/unmap the DSP regions into user-space.

3 Assumptions
The MMU design makes the following assumptions:

• The hardware provides a shared memory area, to which both the GPP and the

DSP have access.

• The following page sizes are supported:

 Super section: 16M bytes

 Section : 1M bytes

 Large page : 64K bytes

 Small page : 4K bytes

4 Constraints
For dynamic addition of entries, any memory overlap cases will treat as error case.

For optimization of TLB entries please make sure

• Requested entries should be continuous.

• Requested entries should be aligned with 16M or 1M or 64K or 4K.

5 High Level Design
The MMU handle the translation from virtual into physical addresses. The requestor

DSP issues virtual addresses to the respective MMU. The MMU translates these

virtual addresses into physical addresses to access the actual resource (memory).

MMU instances (MMU entries) can be used dynamically or statically, in other words,

MMU can be managed by the GPP software or configured directly.

5.1 Static entries
This method avoids the need to write Translation tables in memory and is commonly

used for relatively small address spaces. When an MMU is configured statically,

P
h
y
s
ic
a
l

A
d
d
r
e
s
s
e
s

Virtual
memory
space

MMU
Physical

memory
space

V
ir
tu
a
l

A
d
d
r
e
s
s
e
s

Translation
look-aside
Buffer (TLB)

Table walking logic
Translation
tables

Page 9 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

translation tables are not used, and TLB entries are written directly by the

programmer. It ensures that the translation of time-critical data accesses

execute as fast as possible with entries already present in the TLB. These entries

must be locked to prevent them from being overwritten. N entries fully associative

translation look-aside buffer (TLB) with N = 32 for the DSP. The entries must be

locked to prevent them from being overwritten.

5.2 Dynamic entries
An MMU is configured dynamically when a software subroutine writes translation

tables into the appropriate physical memory space. Whenever an address translation

is requested (that is, for every access with the MMU enabled), the MMU first checks

whether the translation is already contained in the TLB, which acts like a cache

storing recent translations. If the requested translation is not in the TLB, the table-

walking logic retrieves this translation from the translation table(s), and then

updates the TLB.

6 Design
In initial set, some of the DSPLink memory region will be written in the TLB and TLB

will be set to protect these entries, so that these entries are not over written. This is

done, so that GPP side and DSP side has permanent access to the shared memory

region and code/data region as well. Apart from these, GPP side can also dynamically

create/write entries in the TLB, upon user requests.

Whenever a user wants to map some memory address to the DSP address space,

GPP side logic checks for overlaps:

The following are set of overlap cases:

1. Any existing entry’s start address is covered by given entry’s start address and

end address.

 (Given Start Address <= Entry’s start address <= Given End address)

2. Any existing entry’s end address is covered by given entry’s start address and

end address.

 (Given Start Address <= Entry’s end address <= Given End address)

3. Given entry’s start address is covered by any existing entry’s start address and

end address.

 (Entry’s Start Address <= given start address <= Entry End address)

4. Given entry’s end address is covered by any existing entry’s start address and

end address.

 (Entry’s Start Address <= given end address <= Entry End address)

If all of the above conditions are false, then entry is updated in the TLB.

On any overlap case, DSPLink GPP side will return error.

To check the above conditions, a linked-list is maintained in GPP-side so that GPP

does not read the TLB area directly, as the direct access to TLB will require reading

TLB register in the hardware documented way. This linked-list is a replica of TLB, all

entries which exists in the TLB also exists in this linked-list. Also any update made to

TLB is also updated in the linked-list. This linked-list acts like a cache for TLB in GPP.

Page 10 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

For deleting entries, GPP side simply checks whether entry existing the linked-list, if

it exists then it check if the entry is protected or not. If the entry is not protected

then it is deleted from the TLB and linked-list.

6.1 Dynamic addition of entries in the TLB
TLB entries consist of two parts:

The CAM part contains the virtual address tag used to determine if a virtual address

translation is in the TLB. The TLB acts like a fully associative cache addressed by the

virtual address tag. The CAM part also contains the section/page size, as well as the

preserved and the valid parameters.

The RAM part contains the address translation that belongs to the virtual address tag

as well as the endianness, element size, and mixed parameters.

Procedure to create TLB entries are as follows:

1. Reset the first bit of MMU_CNTL register. It disables the MMU.

2. Load the Virtual Address (VATAG), the preserved (P=1) and valid (V=1) bits and

the page size (small or large page, section, super section) into MMU_CAM

register.

3. Load the Physical Address (PHYSICALADDRESS), the endianness

(ENDIANNESS=0), element size (ELEMENTSIZE) and mixed page attributes bits

(MIXED) into MMU_RAM register.

4. Specify the TLB entry you want to write by setting the

MMU_LOCK.CURRENTVICTIM pointer. Start with TLB Entry 0 and increment this

pointer for each subsequent entry you want to write.

5. Load the specified entry in the TLB by setting MMU_LD_TLB.LDTLBITEM=1.

6. Set the first bit of MMU_CNTL register. It enables the MMU.

After writing the CAM and RAM registers, set the entry into the TLB.

The first n TLB entries (with n < total number of TLB entries) can be protected from

being overwritten with new translations. This is useful to ensure that certain

commonly used or time critical translations are always in the TLB and do not require

retrieval via the table walking process.

To protect the first n TLB entries, set the MMU1.MMU_LOCK [12:10] BASEVALUE

field for the IVA2.2 MMU to n.

6.2 Deletion of entries
Two mechanisms exist to delete TLB entries. All unpreserved TLB entries, i.e., TLB

entries that were written with the preserved bit set to zero, can be deleted by

invoking a TLB flush. Such a TLB flush is invoked by setting the

MUn.MMU_GFLUSH[0] GLOBALFLUSH bit.

Individual TLB entries can be flushed, regardless of the preserved bit setting, by

specifying its virtual address in the MMUn.MMU_CAM register and setting the

MMUn.MMU_FLUSH_ENTRY[0] FLUSHENTRY bit.

APIs are as follows:

OMAP3530_halMmuAddEntry This API would add the entry at run time.

OMAP3530_halSearchMmuEntry This API would match an event listener with a list

Page 11 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

element. And also verify the boundary conditions.

OMAP3530_halMmuDeleteEntry This API would delete the entry from TLB and list.

OMAP3530_halCheckMmuEntry This API would match an event listener with a list

element.

PROC_control This API is user interface to map, unmap, add and

delete the DSP memory.

Page 12 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

7 API Usage

If DSP access an area whose mapping is not present in the TLB, then DSP’s MMU

generates an interrupt of PAGE fault type. This interrupt is generated on ARM

(HOST). This happens only in case when table walking logic is disabled. Otherwise, if

it is enabled, MMU checks with tables present in the memory.

To map some area into the DSP’s address space, user can call PROC_control API with

respective commands from GPI side. Below shows a usage scenario of mapping an

area into DSP’s address space.

Add the MMU entry:
ProcMemMapInfo mapInfo ;

mapInfo.dspAddr = DSP_ADDR1 ;
mapInfo.size = 0x80000 ;

status = PROC_control (ID_PROCESSOR,
 PROC_CTRL_CMD_MMU_ADD_ENTRY,
 &mapInfo) ;
Here PROC_CTRL_CMD_MMU_ADD_ENTRY is an enumerated type, directing GPP side

logic to add user given entries to the DSP’s TLB. Now, User may want to write some

information on the area, to be given to DSP. For this user has to map the area into

GPP user/kernel address space. For this below example is useful:
ProcMemMapInfo mapInfo ;

mapInfo.dspAddr = DSP_ADDR1 ;
mapInfo.size = 0x80000 ;

status = PROC_control (ID_PROCESSOR,
 PROC_CTRL_CMD_MAP_DSPMEM,
 &mapInfo) ;

Once the user has done with his/her protocol, he/she may want to unmap the area

from GPP and DSP address space as well. Below code how to achieve this:

Delete the MMU entry:
ProcMemMapInfo unMapInfo ;

unMapInfo.dspAddr = DSP_ADDR1 ;
unMapInfo.size = 0x80000 ;

status = PROC_control (ID_PROCESSOR,
 PROC_CTRL_CMD_UNMAP_DSPMEM,
 &unMapInfo) ;
status = PROC_control (ID_PROCESSOR,
 PROC_CTRL_CMD_MMU_DEL_ENTRY,
 &unMapInfo) ;

Page 13 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

8 Constants & Enumerations
Definition

#define PROC_CTRL_CMD_MAP_DSPMEM

 (PROC_CTRL_CMD_GEN_BASE + 0x00000001u)

#define PROC_CTRL_CMD_UNMAP_DSPMEM

 (PROC_CTRL_CMD_GEN_BASE + 0x00000002u)

#define PROC_CTRL_CMD_MMU_ADD_ENTRY

 (PROC_CTRL_CMD_GEN_BASE + 0x00000003u)

#define PROC_CTRL_CMD_MMU_DEL_ENTRY

 (PROC_CTRL_CMD_GEN_BASE + 0x00000004u)

Comments

PROC_CTRL_CMD_MMU_ADD_ENTRY

This command used to add the entry at run

time.

PROC_CTRL_CMD_MAP_DSPMEM

This command used to map some area into

the DSP’s address space.

PROC_CTRL_CMD_UNMAP_DSPMEM

This command used to unmap the area

from GPP and DSP’s address space.

PROC_CTRL_CMD_MMU_DEL_ENTRY

This command used to delete the entry

from TLB and list.

Page 14 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

9 API definition

9.1 Internal functions

9.1.1 OMAP3530_halMmuAddEntry
This function adds the run time requested entry. Also calls the OMAP3530_
OMAP3530_halSearchMmuEntry function from the attached interface.

Syntax
NORMAL_API
DSP_STATUS
OMAP3530_halMmuAddEntry (IN Uint32 tlbIndex,
 IN Bool type,
 IN Uint32 physAddr,
 IN Uint32 dspVirtAddr,
 IN Uint32 size)

Arguments

IN Uint32 tlbIndex

 TLB entry number.

IN Bool type

 To identify the type of entry (static or run time entry)

IN Uint32 physAddr

 Physical address.

IN Bool dspVirtAddr

 DSP virtual address.

IN Uint32 size

 Size of requested entry.

Return Value

DSP_SOK Operation successfully completed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_SEXISTS Entry exists.

Comments
None.

Constraints
None.

9.1.2 OMAP3530_halSearchMmuEntry
This function search the run time requested entry.

Page 15 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

Syntax
NORMAL_API
DSP_STATUS
OMAP3530_halSearchMmuEntry (IN ListElement * elem, Pvoid data,Bool
type)

Arguments

IN ListElement elem

 List of TLB entries.

IN Pvoid data

 Requested entry.

Return Value

DSP_SOK Operation successfully completed.

DSP_SEXISTS Entry exists.

DSP_ERANGE

Comments
None.

Constraints
None.

9.1.3 OMAP3530_halMmuDeleteEntry
This function deletes the run time requested entry. Also calls the

OMAP3530_halSearchMmuEntry function.

Syntax
EXPORT_API
DSP_STATUS
OMAP3530_halMmuDeleteEntry (IN Pvoid halObj, IN ProcMemMapInfo *
mmuInfo)

Arguments

IN Pvoid halObj

 Hardware Abstraction object.

IN ProcMemMapInfo* mmuInfo

 Control information for mapping DSP memory region in GPP's address

space

Return Value

DSP_SOK Operation successfully completed.

DSP_EMEMORY Operation failed due to a memory error.

Page 16 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

DSP_ECONFIG Operation failed due to a config error.

Comments
None.

Constraints

None.

9.1.4 OMAP3530_halCheckMmuEntry
This function check the run time requested entry to be deleting.

Syntax
NORMAL_API
Bool
OMAP3530_halCheckMmuEntry (IN ListElement * elem, P void data)

Arguments

IN ListElement elem

 List of TLB entries.

IN Pvoid data

 Requested entry.

Return Value

DSP_SOK Operation successfully completed.

DSP_ERANGE Entry not exists

Comments
None.

Constraints
None.

9.2 Exported API

9.2.1 PROC_control
Provides a hook to perform device dependent control operations on the DSP.

Syntax
EXPORT_API
DSP_STATUS
PROC_control (IN ProcessorId procId,
 IN Int32 cmd,
 OPT Pvoid arg)

Arguments

IN ProcessorId procId

 DSP Identifier.

Page 17 of 17 Version 1.60

DSP/BIOS™ LINK

LNK 181 DES

MMU Dynamic entry support (OMAP)

IN Int32 Cmd

 Command id.

e.g

PROC_CTRL_CMD_MAP_DSPMEM

PROC_CTRL_CMD_UNMAP_DSPMEM

PROC_CTRL_CMD_MMU_ADD_ENTRY

PROC_CTRL_CMD_MMU_DEL_ENTRY

IN OPT Pvoid arg

 Optional argument for the specified command.

Return Value

DSP_SOK Operation successfully completed.

DSP_EFAIL General failure.

Comments
None.

Constraints
None.

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Requirements
	Assumptions
	Constraints
	High Level Design
	Static entries
	Dynamic entries

	Design
	Dynamic addition of entries in the TLB
	Deletion of entries

	API Usage
	Constants & Enumerations
	API definition
	Internal functions
	OMAP3530_halMmuAddEntry
	OMAP3530_halSearchMmuEntry
	OMAP3530_halMmuDeleteEntry
	OMAP3530_halCheckMmuEntry

	Exported API
	PROC_control

