¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

DSP/BIOS™ LINK

OS ADAPTATION LAYER FOR LINUX

LNK 024 DES

Version 1.30

Version 1.30 Page 1 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

This page has been intentionally left blank.

Version 1.30 Page 2 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make
corrections, modifications, enhancements, improvements, and other changes to its products
and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should
verify that such information is current and complete. All products are sold subject to TI's
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the
time of sale in accordance with TI's standard warranty. Testing and other quality control
techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is
not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers
are responsible for their products and applications using TI components. To minimize the
risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted
under any TI patent right, copyright, mask work right, or other TI intellectual property right
relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other
intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if
reproduction is without alteration and is accompanied by all associated warranties,
conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered
documentation.

Resale of TI products or services with statements different from or beyond the parameters
stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Version 1.30 Page 3 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

This page has been intentionally left blank.

Version 1.30 Page 4 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS OS ADAPTATION LAYER FOR LINUX
TABLE OF CONTENTS

1 15 o T« [T T ot f T Y e 7
1.1 U o Lo =TT [o BT oo o 1 PP 7

1.2 Terms and Abbreviations . ..o e 7

1.3] (=] =] g Ll PP 7

1.4 L0 A YT 7

2 L1 8
2.1 Resources Available ..o 8

2.2 (DT oY= g o [=] o Vo 1= PP 8

2.3 71 ol o] 0 8

2.4 Typedefs and Data StruCtUrescviiiiiii i 9

2.5 FAY o B 7= o T oo PP 14

3 D 1 18
3.1 Resources Availablecouviriiii e 18

3.2 (DT 0T < g o L= o Lol == PP 18

3.3 [7= 2{ ol g1] oY 18

3.4 Typedefs and Data StrucCturescoiiiiiii i 19

3.5 AP D iNitiON . ittt e 21

4 1 27
4.1 Resources Available ..o e 27

4.2 01T o =T o 1= o ol 1= 27

4.3 7= 2] ol o1] oY P 27

4.4 Typedefs and Data StruCtUresooviiiiiii e 28

4.5 FAY o B T o o PP 30

5 L 1 37
5.1 Resources Available ..o e 37

5.2 1Y o =T o 1= o Tt 1= 37

5.3 7T ol 1] o 37

5.4 Typedefs and Data StruCtUreSoviiiii i e enaeas 38

5.5 FAN o T o o PP 39

6] 45
6.1 Resources Availableo.viriiii e 45

6.2 (D] o1=T g ¥a 1<) o ol =TT PP 45

6.3 (DT T= ol o o) u o] I PR 45

6.4 Typedefs and Data StruCtUres ...c.oviiiiiiii e 46

6.5 AP DfiNitiON . ittt e 48

7 2 2 O 54
7.1 Resources Availablec.ciiiiiii e 54

Version 1.30

Page 5 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS OS ADAPTATION LAYER FOR LINUX
7.2 D] o1=T g ¥a 1<) o ol 1= 54

7.3 (012l i o o 54

7.4 Typedefs and Data Structures ..o e 55

7.5 FAN o B T o oo PP 56

8 PRINT .ouciiiiieiiemranrammasmassassassassassassassansassaasassassassssssssssnsansansansansnnsansansansnnsnnnns 60
8.1 Resources Availablecvieiiii e 60

8.2 01T o= i o 1= o ol 1= 60

8.3 DS I PEION 1ttt e 60

8.4 AP DfiNitiON . ittt e 61

9 SY N C Lottt et e e e e AR AR AR AR AR AR A R R R R REARAREEARE AR R ERRERRE 63
9.1 Resources Availablec.ciiiiiii e 63

9.2 1Y o =T i o 1= o ol 1= 63

9.3 72 ol o] o 63

9.4 Constants & ENUMErations. . .cviiiii i s e e 63

9.5 Typedefs and Data StrucCtures ..ot 65

9.6 FAY o B 7= o T o PP 67

10 1 1 5 79
10.1 Resources Availablec.ciiiiiii e 79

O R B T o= g T 1= o [ol 1= PP 79

301G T B 7<= ol o1] oY o 79

10.4 Typedefs and Data StrUCtUIESoviieiii i ae e 80

10.5 API Definition . .o 81

Version 1.30

Page 6 of 89

Q‘ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX
1 Introduction
1.1 Purpose and Scope

1.2

1.3

14

This document describes the overall design and architecture of the OS Adaptation
Layer (OSAL) of DSP/BIOS™ Link for Linux.

It lists the interfaces exposed by the OSAL and also describes the overall design for
implementation of these interfaces.

The document may not reflect all the return values that a function may return.

Terms and Abbreviations

Term Definition or explanation
OSAL OS Adaptation Layer
References
None
Overview

OSAL provides an abstraction from the basic services of the underlying OS to the
sub-components of the Processor Manager and the Link Driver, in DSP/BIOS™ Link.

Since the OSAL modules interface directly with the underlying OS, it provides
portability to any component built on top of it, as long as the interfaces documented
in this document are ported to the target OS.

Its intended audiences are design and implementation team of DSP/BIOS™ Link.

Version 1.30 Page 7 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

2 CFG

This component provides the functionality to specify the configuration parameters
that the users of DSP/BIOS LINK may want to change according to the target system

2.1 Resources Available
None.

2.2 Dependencies

2.2.1 Subordinates
None.

2.2.2 Preconditions
None.

2.3 Description

The configuration data is stored in structures. The CFG subcomponent provides the
required services to access these structures using predefined KEYS.

Version 1.30 Page 8 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

2.4 Typedefs and Data Structures

2.4.1 CFG_Driver
Driver configuration structure.

Definition

typedef struct CFG_Driver_tag {
Char8 driverName [CFG_MAX STRLEN] ;
Uint32 components ;
Uint32 queuelLength
Uint32 linkTables ;
Uint32 mmuTables

#if defined (MSGQ_ COMPONENT)
Uint32 numMqgas ;
Uint32 numMqts
Uint32 localMqt

#endif /* if defined (MSGQ_ COMPONENT) */

} CFG_Diriver ;
Fields
driverName Name of the driver
components Number of components of driver
queuelength Maximum number of buffer queues
linkTables Number of Link tables in "this" configuration
mmuTables Number of MMU tables in "this" configuration
numMgas Number of MQA's for messaging.
numMaqts Number of MQA's for messaging.
localMqt The id of the MQT which is to be used as Local MQT.
Comments

This structure defines general driver related configuration items. The fields defined
within MSGQ_COMPONEAIe only required when messaging is scaled in.

242 CFG_Gpp
It specifies the general configuration parameters for the GPP side.
Definition
typedef struct CFG_Gpp_tag {
Pstr gppName ;

Uint32 numDsps ;
}CFG_Gpp;

Fields

gppName Name of GPP Processor

Version 1.30 Page 9 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

numDsps Number of DSPs

Comments
None.

243 CFG_Dsp
It specifies the general configuration parameters for the DSP processor.

Definition

typedef struct CFG_Dsp_tag {
Char8 dspName [CFG_MAX_STRLEN];
Uint32 dspArch ;
Char8 execName [CFG_MAX_STRLEN];
Pvoid loaderinterface ;
Uint32 linkTable ;
Uint32 linkTableSize ;
Uint32 autoStart ;
Uint32 resetVector ;
Uint32 wordSize ;
Uint32 endian ;
Uint32 mmuFlag ;
Uint32 mmuTable ;
Uint32 mmuTableSize ;
Pvoid interface ;

#if defined (MSGQ_COMPONENT)
Uint32 mqtld ;

#endif /* if defined (MSGQ_COMPONENT) */ } CFG_Dsp

Fields
dspName Name of DSP Processor
dspArch Architecture of the DSP.
execName Name of the default DSP executable.
loaderinterface Function pointer interface for accessing the loader.
linkTable Index of the link table to be used for this DSP
linkTableSize Table number of the link(s) toward this DSP.
autoStart AutoStart flag.
resetVector Address of reset vector of DSP.
wordSize Word size of DSP in bytes.
endian Endian info of DSP.
mmuFlag Is MMU used?
mmuTable Table number to be used for this DSP
mmuTableSize Number of entries in MMU table.

Version 1.30 Page 10 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS OS ADAPTATION LAYER FOR LINUX
interface Function pointer interface for accessing the DSP.
mqtld The id of the MQT which is to be used for this DSP.
Comments

Base of the keys to fetch DSP related information from the configuration database.

2.4.4 CFG_Link
Base of the keys to fetch link related information from the configuration database.

Definition
typedef struct CFG_Link_tag {
Char8 linkName [CFG_MAX_STRLEN];
Char8 abbr [CFG_MAX_STRLEN];
Uint32 baseChnlid ;
Uint32 numChannels ;
Uint32 maxBufSize ;
Pvoid interfaceTable ;
Uint32 argumentl ;
Uint32 argument2 ;

} CFG_Link;
Fields
linkName Name of Link.
abbr Abbreviation of the link name.
baseChnlld Base channel ID for this link.
numChannels Number of channels for this link.
maxBufSize Maximum size of data buffer on this link.
interfaceTable Interface function table address.
argument1 Link_s_pecific grgun“!ent 1. The significance of this argument is
specific to a link driver.
argument2 Link_s_pecific grgunjent 2 The significance of this argument is
specific to a link driver.
Comments

It specifies the Link configuration parameters.

245 CFG_MmuEntry
Defines an entry in the MMU table.

Definition
typedef struct CFG_MmuEntry_tag {
Uint32 entry ;
Uint32 virtualAddress ;
Uint32 physicalAddress ;
Uint32 size ;

Version 1.30 Page 11 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Uint32 access ;
Uint32 preserve ;
Uint32 mapIinGpp

} CFG_MmuEntry ;

Fields

entry Entry number

virtualAddress Virtual address field of entry

physicalAddress Physical address field of entry

size Size field of entry

access access information for this entry.

preserve Preserve field of entry.

mapInGpp gfc?reisr;d;;aatci:g whether DSP address is mapped to GPP
Comments

It specifies an entry in the MMU table.

246 CFG_Mqga
This structure defines the MQA configuration structure.

Definition
typedef struct CFG_Mqa_tag {
Char8 mgaName [CFG_MAX_STRLEN];
Pvoid interface ;

}CFG_Mqa;
Fields
mgaName Name of the MQA. For debugging purposes only.
interface Function pointer interface to access the functions for this
MQA.
Comments

This structure is defined only if MSGQ_COMPONENTenabled.

2.4.7 CFG_Mqt
This structure defines the MQT configuration structure.

Definition
typedef struct CFG_Mqt_tag {
Char8 mqgtName [CFG_MAX_STRLEN];
Pvoid interface ;
Uint32 linkld ;
} CFG_Mqt;

Version 1.30 Page 12 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS OS ADAPTATION LAYER FOR LINUX
Fields
mqgtName Name of the MQT. For debugging purposes only.
interface Function pointer interface to access the functions for this
MQT.
linkld ID of the link used by this MQT.

Comments
This structure is defined only if MSGQ_COMPONENTenabled.

Version 1.30 Page 13 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

2.5 API Definition

25.1 CFG_lInitialize
This function initializes CFG sub-component.

Syntax
DSP_STATUS CFG_Initialize () ;

Arguments
None.

Return Values

DSP_SOK Component initialized successfully.

Comments
Current implementation does not have any functionality in this function.

Constraints
None.

See Also
CFG_Finalize
252 CFG_Finalize
This function provides an interface to exit from this sub-component.

Syntax

DSP_STATUS CFG_Finalize () ;
Arguments

None.

Return Values

DSP_SOK Component finalized successfully.

Comments

Current implementation does not have any functionality in this function. After this
function call, CFG sub-component must not be used.

Constraints
Module must have been initialized.

See Also
CFG_Initialize

2.5.3 CFG_GetRecord
Gets a particular configuration record in a structure.

Version 1.30 Page 14 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS OS ADAPTATION LAYER FOR LINUX
Syntax
DSP_STATUS CFG_GetRecord (Uint32 key, Uint32 id, Vo id * record) ;
Arguments
IN Uint32 key

Key for the configuration.

IN Uint32 id

Record Id for which configuration is requested

ouT Void * record

Place where to copy the required configuration data

Return Values

DSP_SOK Operation Successful.
DSP EFAIL Operation failed. Requested configuration data not
- found.
DSP_EINVALIDARG Invalid key specified.
Comments
None.

Constraints
record must be a valid pointer.

See Also
CFG_GetNumValue, CFG_GetStrValue

2.5.4 CFG_GetNumValue
Gets a particular configuration parameter as a numeric value.

Sy DSP_STATUS CFG_GetNumValue (Uint32 key, Uint32 id, Uint32 * value) ;
Arguments
IN Uint32 key
Key for the configuration.
IN Uint32 id
Id of record in which to look for the requested value
ouT Uint32 * value

Place where to copy the required configuration data

Version 1.30 Page 15 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Return Values

DSP_SOK Operation Successful.
DSP EEAIL Operation failed. Requested configuration data not
- found.
DSP_EINVALIDARG Invalid key specified.
Comments
None.

Constraints
value must be a valid pointer.

See Also
CFG_GetRecord, CFG_GetStrValue

255 CFG_GetStrvalue
Gets a particular configuration parameter as a string.

Sy DSP_STATUS CFG_GetStrValue (Uint32 key, Uint32 id, Pstr string) ;
Arguments
IN Uint32 key
Key for the configuration.
IN Uint32 id
Id of record in which to look for the requested value
ouT Pstr string

Place where to copy the required configuration data

Return Values

DSP_SOK Operation Successful.
DSP EFAIL Operation failed. Requested configuration data not
- found.
DSP_EINVALIDARG Invalid key specified.
Comments
None.

Constraints
string must be a valid pointer.

Version 1.30 Page 16 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

See Also
CFG_GetRecord, CFG_GetNumValue

Version 1.30 Page 17 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS OS ADAPTATION LAYER FOR LINUX
3 DPC
This component provides the services of a Deferred Procedure Call. It allows
execution of non time-critical code to be postponed to a later point of time.
3.1 Resources Available
The Linux kernel contains two mechanisms that can be used to implement the
required functionality of this sub-component:
1. BH
2. tasklets
tasklets have been preferred for our implementation as they are the suggested
mechanism to perform the bottom half processing of an interrupt on more recent
versions of the Linux kernel.
3.2 Dependencies
3.2.1 Subordinates
SYNC, MEM, TRC
3.2.2 Preconditions
None.
3.3 Description

DPC object contains an instance of tasklet = object. A DpcObject is associated with
an interrupt. When the interrupt occurs, it calls DPC_Schedule () with the
DpcObject as the argument. DPC_Schedule () schedules its associated tasklet.
When the tasklet is scheduled to run by Linux kernel, the DPC_CallBack ()
function is invoke. DPC_CALLBACK in turn calls the function pointed by UserDPCFn
with reference data pointed by ParamData.

The Dpcs array in DPC_DpcTaskletInfo structure, which is a placeholder that stores
all DPC objects. The UsedDPCs field in this structure is a bit mask that keeps track of
DPCsthat are in use.

Version 1.30 Page 18 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

3.4 Typedefs and Data Structures

Definition
typedef Void (*FnDpcProc) (Pvoid refData) ;

Comments
This is the function signature for a user supplied DPC function for DSP/BIOS Link.

3.4.1 DpcObject
This object stores information related to a deferred procedure call.

Definition

struct DpcObiject_tag {
Uint32 signature ;
Uint32 index :
Pvoid paramData ;
FnDpcProc userDPCFn
Uint32 numRequested ;
Uint32 numServiced ;

H
Fields
signature “SDiggilt,ure identifying the DPC object. Is the literal string
index Index of the DPC object
paramData Parameter to be passed to the deferred function call
userDPCFunc Pointer to the user supplied function
numRequested Number of times this DPC is scheduled
numServiced Number of time this DPC has been serviced
Comments
None.

Constraints
None.

See Also
DPC_DpcTaskletinfo

3.4.2 DPC_DpcTaskletinfo

This structure defines the association between DpcObjects and their corresponding
tasklets. It also contains a bitmap for tracking used Dpc objects.

Definition
typedef struct DPC_DpcTaskletinfo_tag {
Uint32 usedDPCs ;

Version 1.30 Page 19 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

DpcObject dpcs [MAX_DPC] ;
struct tasklet_struct dpcTasklet [MAX _DPC]J;
} DPC_DpcTaskletInfo ;

Fields
usedDPCs A Bitmap to keep track of DPCs that have been currently
allocated and are used
dpcs An Array to hold MAX_DPGumber of DPC objects
dpcTasklet tasklet objects to be used in conjunction with DpcObjects
Comments

This structure is a placeholder for all DPC objects and their associated usage
information.

Constraints
None.

See Also
DpcObject
DPC_lnitialize
DPC_Create
DPC_Destroy

Version 1.30 Page 20 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

3.5 API Definition

3.5.1 DPC_lInitialize

This function initializes the DPC module. It initializes the global area
(DPC_DpcTaskletMap structure) for holding all the DPC objects and marks the
UsedDPCs bitmap to indicate that no DPCs are currently in use.

Syntax
DSP_STATUS DPC_lInitialize () ;

Arguments
None.

Return Values

DSP_SOK Successful initialization.

DSP_EMEMORY Out of memory error.
Comments

None.

Constraints
None.

See Also

DPC_DpcTaskletinfo
DPC_Create
DPC_Finalize

3.5.2 DPC_Finalize
This function releases all resources held by this sub-component.

Syntax
DSP_STATUS DPC_Finalize () ;

Arguments
None.

Return Values

DSP_SOK Successful initialization.

DSP_EMEMORY Out of memory error.

DSP_EFAIL General error from GPP-0OS.
Comments

During this function call it kills the tasklets associated with any DPCs that may be in
use.

Version 1.30 Page 21 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Constraints
The sub-component must have been initialized.

See Also
DPC_Initialize

3.5.3 DPC_Create
Creates a DPC object and returns it after populating relevant fields.

Syntax
DSP_STATUS DPC_Create (FnDpcProc userDPCFn,
Pvoid dpcArgs,
DpcObject ** dpcObj) ;

Arguments
IN FnDpcProc userDPCFn
User specified DPC function
IN Pvoid dpcArgs
Arguments to the user specified DPC function
ouT DpcObject ** dpcObj

Pointer to the DPC object to be created

Return Values

DSP_SOK Successfull creation of DPC Object.

DSP_EINVALIDARG Invalid parameters.

DSP_ERESOURCE Maximum allowable number of DPCs created.
Comments

A call to DPC Create() results in it reserving a DpcObject from the array,
DpcTaskletinfo->Dpcs . The corresponding index bit in DpcTaskletinfo->UsedDPCs
is set. The callback is then set to DPC_Callback ().

Constraints
This sub-component must be initialized.

userDPCFn must be a valid function.

dpcObj must be a valid DPC object.

See Also
DPC_Initialize
DPC_Schedule
DPC_Cancel
DPC_Callback
DPC_Delete

Version 1.30 Page 22 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

3.5.4 DPC_Delete
This function releases all resources associated with a DPC Object.

Syntax

DSP_STATUS DPC_Delete (DpcObject * dpcObj) ;
Arguments

IN DpcObject * dpcObj

DPC Object to be destroyed.

Return Values

DSP_SOK Successful initialization.

DSP_EMEMORY Memory error.

DSP_EFAIL General error from GPP-0OS.

DSP_EINVALIDARG Invalid dpcObj parameter.

DSP_EPOINTER Invalid handle to DpcObiject.
Comments

This function kills the tasklet associated with DpcObject, effectively canceling all
pending calls to DPC. It also resets corresponding bit in DpcTaskletinfo->UsedDPCs
bitmask to indicate that the DPC is no longer used.

Constraints
This component must be initialized.

dpcObj must be a valid DPC object.

See Also
DPC_Create

DPC_Cancel
3.5.5 DPC_Cancel

This function cancels all pending calls to a DPC that were scheduled by
DPC_Schedule () and have not yet been completed.

Syntax

DSP_STATUS DPC_Cancel (DpcObject * dpcObj) ;
Arguments

IN DpcObject * dpcObj

DPC Object to be cancelled.

Return Values

DSP_SOK Successfully cancelled the DPC

Version 1.30 Page 23 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS OS ADAPTATION LAYER FOR LINUX
DSP_EPOINTER Invalid handle to DpcObject .
DSP_EINVALIDARG Invalid DpcObject index
DSP_EMEMORY Memory error.
DSP_EFAIL General error from GPP-0OS.
Comments

This function sets the numServiced value to numRequested indicating that no DPCs
are pending.

Constraints
This sub-component must be initialized.

dpcObj must be a valid DPC object.

See Also
DPC_Initialize
DPC_Create
DPC_Schedule

3.5.6 DPC_Schedule

Schedules the user-defined function associated with dpcObj to be invoked at a later
point of time.

Syntax

DSP_STATUS DPC_Schedule (DpcObject * dpcObj) ;
Arguments

IN DpcObject * dpcObj

DPC_Object to be scheduled.

Return Values

DSP_SOK Successfully scheduled the DPC.
DSP_EPOINTER Invalid handle to DpcObject .
DSP_EINVALIDARG Invalid DpcObiject index
DSP_EFAIL General error from GPP-0OS.
Comments
This function calls tasklet_schedule () after incrementing the numRequesed field

in DpcTaskletinfo

Constraints
This sub-component must be initialized.

dpcObj must be a valid DPC object.

Version 1.30 Page 24 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

See Also

DPC_Callback
DPC_Create

3.5.7 DPC_Debug

This function is used to print the current status of DPC objects in the system.

Syntax
Void DPC_Debug () ;

Arguments

None.

Return Values
None.

Comments

None.

Constraints
This function can only be used in debug builds.

See Also
None.

3.5.8 DPC_Callback
The OS kernel calls this function when a DPC is scheduled to run.

Syntax

void DPC_Callback (unsigned long index) ;
Arguments

IN unsigned log index

Indicates in index in DPC object table.

Return Values
None.

Comments

This function checks if there are any pending calls to the DPC and invokes the user
specified function in a loop to service all pending calls.

Constraints
This function is called by Linux Kernel as tasklet entry point.

See Also

DPC_Create
DPC_Schedule

Version 1.30 Page 25 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

3.5.9 FnDpcProc

Function prototype for DPC function. The user defined functions that is to be invoked
as a DPC should conform to this signature.

Syntax
Void (*FnDpcProc) (Pvoid refData)
Arguments
IN Pvoid refData

Argument to be passed to DPC call.

Return Values
None.

Comments
None.

Constraints
None.

See Also

DPC_Callback
DPC_Create

Version 1.30 Page 26 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

4 ISR

This component provides interfaces to hook up and service interrupts.

4.1 Resources Available

The Linux kernel provides interrupt services based on irgs. This facility has been
used for implementing this sub-component.

4.2 Dependencies

4.2.1 Subordinates
MEM, TRC

4.2.2 Preconditions
None.

4.3 Description

An array of IsrObject pointers is maintained to keep track of installed ISRs and
their mapping to irgs in the Linux kernel.

A call to ISR_Install () results in ISR_Callback () to get registered as the
ISR for the specified irq. When an interrupt occurs, ISR_Callback () gets invoked
and based on the irq number, it calls the user defined ISR.

Version 1.30 Page 27 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

4.4 Typedefs and Data Structures

4.4.1 IsrProc
Function prototype for an ISR. The user defined function to be invoked as an ISR
must conform to this signature

Definition
typedef Void (*IsrProc) (Pvoid refData) ;

Arguments
IN Pvoid refData
Data to be passed to ISR when invoked
Comments

This is the function signature for an interrupt service routine for DSP/BIOS Link.

4.4.2 IsrObject

Defines object to encapsulate the interrupt service routine. The definition is
0OS/platform specific.

Definition
typedef struct IsrObject_tag {
Uint32 signature ;
Pvoid refData ;
IsrProc fnISR ;

int irq
Bool enabled ;
} IsrObject ;
Fields
signature Signature to identify this object. Is the literal string "ISR_".
refData Argument to be passed to the Interrupt Service Routine.
fnISR Actual Interrupt service routine.
irq IRQ number for which ISR is to be installed.
enabled Flag to indicate the ISR is enabled
Comments
None.

Constraints
None.

See Also
None.

Version 1.30 Page 28 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

4.4.3 Interruptinfo
This structure encapsulates OS specific details of identifying an interrupt.

Definition
typedef struct Interruptinfo_tag {
Int32 intld ;
} Interruptinfo ;

Fields

intld Interrupt identifier.

Comments
On Linux, an interrupt is identified through an IRQ number.

Constraints
None.

See Also
IsrObject

Version 1.30 Page 29 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

45 API Definition

45.1 ISR _Initialize
This function initializes the array of IsrObject pointers to NULL.

Syntax
DSP_STATUS ISR_Initialize () ;

Arguments
None.

Return Values

DSP_SOK Successful initialization.

DSP_EMEMORY Out of memory.
Comments

None.

Constraints
ISR sub-component must be initialized.

See Also

ISR_Install
ISR_Finalize

45.2 ISR_Finalize

This function finalizes all the resources used by this subcomponent and uninstalls any
ISRs that have not yet been uninstalled.

Syntax
DSP_STATUS ISR_Finalize () ;

Arguments
None.

Return Values

DSP_SOK Successful initialization.

DSP_EMEMORY Out of memory.
Comments

None.

Constraints
ISR sub-component must be initialized.

Version 1.30 Page 30 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

See Also
ISR _Initialize
453 ISR_Create

This function creates an ISR object. It encapsulates the OS dependent definition of
an ISR into the IsrObject and returns the caller.

Syntax
DSP_STATUS ISR_Create (IsrProc fnISR,
Pvoid refData,
Interruptinfo * intinfo,
IsrObject ** isrObj) ;
Arguments
IN IsrProc fnISR
Interrupt service routine
IN Pvoid refData
Parameter to be passed to ISR
IN Interruptinfo * intinfo
Interrupt information (OS and hardware dependent).
ouT IsrObject ** isrObj

Out argument for IsrObject

Return Values

DSP_SOK Operation succesfully completed.
DSP_EMEMORY Out of memory.
DSP_EINVALIDARG Invalid arguments.

Comments
None.

Constraints
ISR sub-component must be initialized.

isrObj must be valid pointer.
intinfo must be a valid pointer.
fnISR must be a valid function pointer.

See Also
ISR_Delete

45.4 ISR_Delete
This function releases memory allocated for the isrObj

Version 1.30 Page 31 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS OS ADAPTATION LAYER FOR LINUX
Syntax
DSP_STATUS ISR_Delete (IsrObject * isrObj) ;
Arguments
IN IsrObject * isrObj

Isr object to be deleted

Return Value

DSP_SOK Operation succesfully completed.

DSP_EPOINTER Invalid isrObj pointer.

DSP_EMEMORY Memory error.

DSP_EACCESSDENIED Can't delete an IsrObject unless it is uninstalled.
Comments

None.

Constraints
ISR subcomponent must be initialized.

isrObj must be a valid object.
isrObj must not be installed.

See Also
ISR_Create

455 ISR _Install
Install an interrupt service routine defined by the IsrObject structure.

Syntax

DSP_STATUS ISR_lInstall (Void * hostConfig,
IsrObject * isrObj) ;

Arguments
IN Void * hostConfig
Host configuration to be used for installing the ISR
IN IsrObject * isrObj

ISR object to be installed.

Return Value

DSP_SOK Operation succesfully completed.
DSP_EPOINTER Invalid isrObj pointer.
DSP_EACCESSDENIED ISR already installed for specified interruptInfo.

Version 1.30 Page 32 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX
DSP_EFAIL General error from GPP-0S.
Comments
This function makes a call to request_irg () to install the interrupt specified by
isrObj

Constraints
ISR sub-component must be initialized.

isrObj must be valid.

See Also

ISR_Func
ISR_Uninstall

45.6 ISR _Uninstall
Uninstalls the interrupt service routine defined by isrObj

Syntax

DSP_STATUS ISR_Uninstall (IsrObject * isrObj) ;
Arguments

IN IsrObject * isrObj

The interrupt object to be uninstalled

Return Value

DSP_SOK Operation succesfully completed.

DSP_EPOINTER Invalid isrObj pointer.

DSP_EACCESSDENIED ISR is already uninstalled.

DSP_EFAIL General error from GPP-0OS.
Comments

None.

Constraints
ISR sub-component must be initialized.

isrObj must be a valid IsrObject

See Also
ISR_Install

45.7 ISR_Disable
Disables an ISR associated with interrupt Id of isrObject

Version 1.30 Page 33 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS OS ADAPTATION LAYER FOR LINUX
Syntax
DSP_STATUS ISR_Disable (IsrObject * isrObj) ;
Arguments
IN IsrObject * isrObj

ISR Object indicating the isr to be disabled.

Return Value

DSP_SOK Operation succesfully completed.

DSP_ENOTIMPL Function not implemented.

DSP_EACCESSDENIED ISR is not installed.

DSP_EFAIL General error from GPP-0OS.
Comments

This function calls disable_irq function of the Linux kernel to disable the specified
interrupt.

Constraints

ISR sub-component must be initialized.

See Also
ISR_Enable
ISR_Install

45.8 ISR_Enable

Reactivates ISRs based on the specified flags argument. The flags argument must be
obtained with an earlier call to ISR_Disable.

Syntax

DSP_STATUS ISR_Enable (IsrObject * isrObj) ;
Arguments

IN IsrObject * isrObj

ISR Object indicating the isr to be enabled.

Return Value

DSP_SOK Operation succesfully completed.

DSP_ENOTIMPL Function not implemented.

DSP_EFAIL General error from GPP-0OS.
Comments

This function calls enable_irqg () function of the Linux kernel to enable the specified
interrupt.

Version 1.30 Page 34 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Constraints
isrObj must be a valid object.

See Also
ISR_Disable

45,9 ISR_GetState
Gets the status of ISR associated to this isrObject

Sy DSP_STATUS ISR_GetState (IsrObject * isrObj, ISR_S tate * isrState) ;
Arguments
IN IsrObject * isrObj
The ISR object
ouT ISR_State * isrState

Current status of the ISR

Return Value

DSP_SOK Operation succesfully completed.

DSP_EPOINTER Invalid isrObj argument

DSP_EINVALIDARG Invalid isrStatus pointer.
Comments

None.

Constraints
ISR subcomponent must be initialized.

isrObj must be a valid IsrObject

isrState must be a valid pointer.

See Also
ISR_Install
ISR_Disable
ISR_Uninstall
ISR_Enable

4.5.10 ISR_Callback

This function is registered as an interrupt handler for all the irgs on which user wants
to register an ISR. The Linux kernel calls this function when an interrupt occurs on
the specified irg. This function, then, looks up the irq and invokes the user specified
interrupt service routine.

Syntax
void ISR_Callback (int irg, void * arg, struct pt_r egs * flags) ;

Version 1.30 Page 35 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX
Arguments
IN int irq

IRQ number of the interrupt

IN void * arg

Argument to the ISR_Callback as specified while registering the
interrupt

IN pt_regs * flags
Flags associated with the interrupt

Return Value
None.

Comments
None.

Constraints

This function is invoked by the MV Linux kernel and is not invoked from anywhere
else.

See Also
ISR_Install

Version 1.30 Page 36 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

5 KFILE

This component provides file system services to DSP/BIOS™ LINK similar to the
ANSI C file system.

51 Resources Available

The Linux kernel provides function pointers to perform file operations. The function
pointers are the recommended method to perform file IO.

5.2 Dependencies

5.2.1 Subordinates
MEM, TRC

5.2.2 Preconditions
None.

5.3 Description

This component provides services to open, close, read from and write to a file. It also
provides interface to reposition the file pointer.

Version 1.30 Page 37 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

5.4 Typedefs and Data Structures
5.4.1 KFileObject_tag

Definition

struct KFileObject_tag {
Uint32 signature ;
struct file * fp ;
Pstr fileName ;
Bool opened ;
Uint32 size
Uint32 curPos ;

H
Fields
signature Signature of the KFILE object
fp File pointer.
fileName Name of the file
opened Flag to track whether the file is opened
size Size of this file
curPos Current file position indicator
Comments
None.

Constraints
None.

See Also
None.

Version 1.30 Page 38 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

5.5 API Definition

5.5.1 KFILE_Initialize
Initializes the KFILE sub-component by allocating all resources.

Syntax
DSP_STATUS KFILE_Initialize () ;

Arguments
None.

Return Values

DSP_SOK Successful initialization of component.
DSP_EMEMORY Memory error, out of memory.
DSP_EFILE File system error.

Comments
None.

Constraints
None.

See Also
KFILE_Finalize

5.5.2 KFILE_Finalize
Releases resources used by this sub-component.

Syntax
DSP_STATUS KFILE_Finalize () ;

Arguments
None.

Return Values

DSP_SOK Operation successfully completed.
DSP_EMEMORY Out of memory.

Comments
None.

Constraints
Sub-component must be initialized.

Version 1.30 Page 39 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

See Also
KFILE_Initialize

5.5.3 KFILE_Open
Opens the specified file.

Syntax
DSP_STATUS KFILE_Open (CONST Char8 * fileName,
CONST Char8 * mode,
KFileObject ** fileHandle) ;

Arguments
IN CONST Char8 * fileName
Name of the file to be opened
IN CONST Char8 * mode
Mode for opening the file "read", "write", "append" etc
ouT KFileObject ** fileHandle

Handle to the opened file if it could be opened successfully.

Return Values

DSP_SOK Operation successfully completed.
DSP_EMEMORY Out of memory error.
DSP_EFILE File not found.
DSP_EINVALIDARG Invalid arguments.
Comments

This function uses the filp_open () function provided by the Linux kernel to open the
file. The return value from this function is stored in the ‘fp’ field of the KFileObject
structure. The fp’ pointer is then used for other file IO operations. Constraints

Sub-component must be initialized.
fileName must be valid.
mode must be valid.

fileHandle must be valid.

Constraints
None.

See Also
KFILE_Close
KFILE_Read
KFILE_Write

Version 1.30 Page 40 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

5.5.4 KFILE_Close
Closes a file handle.

Syntax

DSP_STATUS KFILE_Close (KFileObject * file) ;
Arguments

IN KFileObject * file

Handle of file to close, returned from KFILE_Open

Return Values

DSP_SOK Operation successfully completed.
DSP_EPOINTER Invalid file object.
DSP_EFILE File is not open.
DSP_EINVALIDARG Invalid arguments.

Comments
This function uses filp_close () function to close the file.

Constraints
Sub-component must be initialized.

fileObj must be a valid handle to a file opened earlier.

See Also
KFILE_Open

55,5 KFILE_Read
Reads a specified number of items of specified size bytes from the file to a buffer.

Syntax
DSP_STATUS KFILE_Read (Char8 * buffer
Uint32 size,
Uint32 count,
KFileObject * fileObj) ;
Arguments
ouT Char8 * buffer
Buffer in which the contents of file are read
IN Uint32 size
Size of each object to read from file
IN Uint32 count

Number of objects to read

Version 1.30 Page 41 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

IN KFileObject * fileObj

KfileObject to read from

Return Values

DSP_SOK Operation successfully completed.

DSP_EPOINTER Invalid file object.

DSP_EFILE Error reading file.

DSP_EINVALIDARG Invalid arguments.

DSP_ERANGE The requested number of bytes is beyond EOF.
Comments

This function reads size*count bytes from the file and fills the buffer with the data
read.

Constraints
fileObj must be a valid KFileObject pointer opened earlier.

Sub-component must be initialized.

See Also

KFILE_Write
KFILE_Open

5.5.6 KFILE_Seek
Repositions the file pointer according to the specified arguments.

Syntax
DSP_STATUS KFILE_Seek (KFileObject * fileObj,
Int32 offset,
KFILE_FileSeek origin) ;
Arguments
IN KFileObject * fileObj
Handle to file whose pointer is to be repositioned
IN Int32 offset
Offset for positioning the file pointer
IN KFILE_FileSeek origin

Origin for calculating absolute position where file pointer is to be

positioned. This can take the following values: KFILE_SeekSet
KFILE_SeekCur
KFILE_SeekEnd

Version 1.30 Page 42 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Return Values

DSP_SOK Operation successfully completed.
DSP_EPOINTER Invalid file object.
DSP_EFILE File is not opened.
DSP_EINVALIDARG Invalid arguments.
DSP ERANGE Offset and origin combination is beyond file size
- range.
Comments
None.

Constraints
fileObj must be a valid handle.

Subcomponent must be initialized.

See Also
KFILE_Tell

5.5.7 KFILE_Tell
Returns the current file pointer position for the specified file handle.

Syntax
DSP_STATUS KFILE_Tell (KFileObject * fileObj, Int32 * pos) ;
Arguments
IN KFileObject * fileObj
The fileObject pointer
ouT Int32 * pos

OUT argument for holding the current file position indicator value

Return Values

DSP_SOK Operation successfully completed.
DSP_EPOINTER Invalid file object.
DSP_EFILE File is not opened.
DSP_EINVALIDARG Invalid arguments.

Comments
None.

Constraints
Sub-component must be initialized.

Version 1.30 Page 43 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

fileObj must be a valid handle to a file opened earlier.

See Also
KFILE_Seek

Version 1.30 Page 44 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

6.1

6.2

6.2.1

6.2.2

6.3

MEM

This component provides dynamic memory allocation and deallocation services at run
time.

Resources Available

The Linux kernel provides two mechanisms to allocate and free memory:
1. kmalloc() and kfree()
2. vmalloc() and vfree()

kmalloc() and kfree() functions ensure that the underlying physical memory is
contiguous. vmalloc() and vfree() functions allocate contiguous memory in the
virtual space.

DSP/BIOS™ LINK does not need physically contiguous memory and hence vmalloc()
and vfree() functions have been used in implementing this sub-component.

Dependencies

Subordinates
None.

Preconditions

None.

Description
DSP/BIOS Link uses kernel memory for its own memory requirements.

Version 1.30 Page 45 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

6.4 Typedefs and Data Structures

6.4.1 MemAllocAttrs

OS dependent attributes for allocating memory.
Definition

typedef struct MemAllocAttrs_tag {

Uint32 * physicalAddress ;
} MemAllocAttrs ;

Fields

physicalAddress Physical address of the allocated memory.

Comments
None.

Constraints
None.

See Also
MemFreeAttrs

6.4.2 MemFreeAttrs
OS dependent attributes for freeing memory.

Definition
typedef struct MemFreeAttrs_tag {
Uint32 * physicalAddress ;
Uint32 size;
} MemFreeAttrs ;

Fields
physicalAddress Physical address of the memory to be freed.
size Size of the memory to be freed.

Comments
None.

Constraints
None.

See Also
MemAllocAttrs

6.4.3 MemMaplinfo
OS dependent definition of the information required for mapping a memory region.

Version 1.30 Page 46 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Definition
struct MemMaplnfo_tag {
Uint32 src ;
Uint32 size;
Uint32 dst ;
} MemMaplnfo ;

Fields

src Address to be mapped.
size Size of memory region to be mapped.
dst Mapped address.

Comments
None.

Constraints
None.

See Also
MemUnmaplnfo

6.4.4 MemUnmaplinfo

0OS dependent definition of the information required for unmapping a previously
mapped memory region.

Definition
struct MemUnmaplnfo_tag {
Uint32 addr ;
Uint32 size;
} MemUnmaplnfo ;
Fields
Address to be unmapped. This is the address returned as
addr 'dst’ address from a previous call to MEM_Map () in the
MemMaplnfo structure.
size Size of memory region to be unmapped.
Comments
None.

Constraints
None.

See Also
MemMaplnfo

Version 1.30 Page 47 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

6.5 API Definition

6.5.1 MEM._Initialize
Initializes the MEM sub-component.

Syntax
DSP_STATUS MEM_Initialize () ;

Arguments
None.

Return Values

DSP_SOK Operation successfully completed.
DSP_EMEMORY Memory error occurred.
Comments

This function sets the initialized flag to TRUE

Constraints
None.

See Also
None.

6.5.2 MEM_Finalize
Releases all resources used by this sub-component.

Syntax
DSP_STATUS MEM_Finalize () ;

Arguments
None.

Return Values

DSP_SOK Operation successfully completed.

DSP_EMEMORY Memory error occurred.

DSP_EFAIL General error from GPP-0OS.
Comments

This function sets the initialized flag to FALSE.

Constraints
None.

Version 1.30 Page 48 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

See Also
None.

6.5.3 MEM_Alloc
Allocates the specified number of bytes.

Syntax
DSP_STATUS MEM_Alloc (Void ** ptr, Uint32 cBytes, P void arg) ;
Arguments
ouT Void ** ptr
Location where pointer to allocated memory will be kept
IN Uint32 cBytes
Number of bytes to allocate
INOUT Pvoid arg

Type of memory to allocate. MEM_DEFAULT should be used if there is no
need for allocating a special type of memory. The meaning of ‘special’
type is dependent on the h/w platform and the operating system - e.g.
the ‘special’ could mean ‘uncached’ or ‘physically contiguous memory’
on a specific platform.

Return Values

DSP_SOK Operation successfully completed.
DSP_EMEMORY Out of memory error.
DSP_EINVAILDARG Invalid argument.

Comments

This function uses vmalloc () .
For allocating the ‘special’ type of memory on Linux, this function uses
consistent_alloc () kernel API.

Constraints
MEM must be initialized.

ptr must be a valid pointer.

See Also
MEM_Free

6.5.4 MEM_Calloc
Allocates the specified number of bytes and clears them by filling it with zeroes.

Syntax
DSP_STATUS MEM_ Calloc (Void ** ptr, Uint32 cBytes, Pvoid arg) ;

Version 1.30 Page 49 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX
Arguments
ouT Void ** ptr

Location where pointer to allocated memory is returned

IN Uint32 cBytes

Number of bytes to allocate

INOUT Pvoid arg

Type of memory to allocate. MEM_DEFAULT should be used if there is no
need allocating a special type of memory.

Return Values

DSP_SOK Operation successfully completed.
DSP_EMEMORY Out of memory error.
DSP_EINVAILDARG Invalid argument.

Comments
None.

Constraints
MEM must be initialized.

ptr must be a valid pointer.

See Also
None.

6.5.5 MEM_Free
Frees up the allocated chunk of memory.

Syntax
DSP_STATUS MEM_Free (Pvoid * ptr, Pvoid arg) ;
Arguments
IN Pvoid * ptr
Pointer to pointer to start of memory to be freed
IN Pvoid arg

Type of memory to be freed. Should be the same flag as was used
during allocation of memory

Return Values

DSP_SOK Operation successfully completed.

DSP_EMEMORY Out of memory error.

Version 1.30 Page 50 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

DSP_EINVAILDARG Invalid argument.

Comments
None.

Constraints
MEM must be initialized.

ptr must be a valid pointer.

See Also
None.

6.5.6 MEM_Map
Maps a specified memory area into the GPP virtual space.

Syntax

DSP_STATUS MEM_Map (MemMaplnfo * maplnfo) ;
Arguments

INOUT MemMaplinfo * maplinfo

Data required for creating the mapping

Return Values

DSP_SOK Operation successfully completed.

DSP_EMEMORY Could not map the given memory address.
Comments

None.

Constraints
maplinfo pointer must be valid.

See Also
MEM_Unmap

6.5.7 MEM_Unmap
Unmaps the specified memory area.

Syntax

DSP_STATUS MEM_Unmap (MemUnmaplnfo * unmapinfo) ;
Arguments

IN MemUnmaplnfo * unmaplinfo

Information required for unmapping a memory area

Version 1.30 Page 51 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Return Values

DSP_SOK Operation successfully completed.

Comments
None.

Constraints
unmaplinfo pointer must be valid.

See Also
MEM_Map

6.5.8 MEM_Copy
Copies data between the specified memory areas.

Syntax
DSP_STATUS
MEM_Copy (Uint8 * dst, Uint8 * src, Uint32 len, End ianism endian) ;
Arguments
IN uint8 * dst
Destination address
IN Uint8 * src
Source address
IN Uint32 len
Length of data to be coiped.
IN Endianism endian
Endianism
Return Values
DSP_SOK Operation successfully completed.
Comments
None.

Constraints
dst and src must be valid pointers.

See Also
None.

6.59 MEM_Debug
Prints debug information for MEM.

Version 1.30 Page 52 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Syntax
Void MEM_Debug () ;

Arguments

None.

Return Values
None.

Comments

None.

Constraints
This function can only be used in debug builds.

See Also
None.

Version 1.30 Page 53 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

7 PRCS

7.1 Resources Available

Linux provides the standard UNIX process model, which also includes threads. This
has been used in implementing this sub-component.

7.2 Dependencies

7.2.1 Subordinates
TRC

7.2.2 Preconditions
None.

7.3 Description
None.

Version 1.30 Page 54 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

7.4 Typedefs and Data Structures

7.4.1 PrcsObject

Structure to store information regarding current process/thread. This structure is
specific to Linux
Definition

struct PrcsObject_tag {

Uint32 signature ;

Void * handleToProcess ;

Void * handleToThread ;

Int32 priorityOfProcess ;

Int32 priorityOfThread ;

}1
Fields
signature Signature of this structure.
handleToProcess Handle to current process.
handleToThread Handle to current thread.
priorityOfProcess Priority of current process.
priorityOfThread Priority of current thread.
Comments
None.

Version 1.30 Page 55 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

7.5 API Definition

7.5.1 PRCS Initialize
Initializes the PRCS sub-component.

Syntax
DSP_STATUS PRCS_Initialize () ;

Arguments
None.

Return Values

DSP_SOK Operation successfully completed.
DSP_EMEMORY Out of memory error.

Comments
None.

Constraints
None.

See Also
None.

7.5.2 PRCS _Finalize
Releases resources used by the PRCS sub-component.

Syntax
DSP_STATUS PRCS_Finalize () ;

Arguments
None.

Return Values

DSP_SOK Operation successfully completed.

DSP_EFAIL General error from GPP-0OS.
Comments

None.

Constraints
None.

See Also
None.

Version 1.30 Page 56 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

7.5.3 PRCS_Create
Creates a PrcsObject and populates it with information to identify the client.

Syntax

DSP_STATUS PRCS_Create (PrcsObject ** prcsObj);
Arguments

ouT PrcsObject ** prcsObj

OUT argument to store the created object

Return Value

DSP_SOK Operation successfully completed.
DSP_EINVALIDARG Invalid argument.

Comments
None.

Constraints
prcsObj must be a valid pointer.

See Also
PRCS_Delete

7.5.4 PRCS_Delete
Frees up resources used by the specified object.

Syntax

DSP_STATUS PRCS_Delete(PrcsObject * prcsObj)
Arguments

ouT PrcsObject * prcsObj

Object to be deleted.

Return Value

DSP_SOK Operation successfully completed.
DSP_EPOINTER Invalid prcsObj.

Comments
None.

Constraints
prcsObj must be a valid object.

Version 1.30 Page 57 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

See Also
PRCS_Create

7.5.5 PRCS_IsEqual

Compares two clients to check if they are "equal". Equality is defined by
implementation on the specific OS port.

Syntax
DSP_STATUS PRCS_IsEqual (PrcsObject * clientl,
PrcsObiject * client2,
Bool * isEqual) ;

Arguments
IN PrcsObject * clientl
First client's information
IN PrcsObject * client2
Second client's information
ouT Bool * isEqual

Place holder for result of comparison

Return Values

DSP_SOK Operation successfully completed.

Comments
None.

Constraints
clientl must be a valid object.

client2 must be a valid object.

isEqual must be a valid pointer.

See Also
PRCS_Create

7.5.6 PRCS_IsSameContext
Checks if the two clients share same context.

Syntax
DSP_STATUS PRCS_IsSameContext (PrcsObject * clien t1,
PrcsObject * clien t2,
Bool * isSam e);
Arguments
IN PrcsObject * clientl

Version 1.30 Page 58 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

First client's information

IN PrcsObject * client2

Second client's information

ouT Bool * isSame

Place holder for result of comparison

Return Values

DSP_SOK Operation successfully completed.
DSP_EINVALIDARG Invalid argument.

Comments
None.

Constraints
clientl must be a valid object.

client2 must be a valid object.

isSame must be a valid pointer.

See Also
PRCS_Create

Version 1.30 Page 59 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

8 PRINT
This subcomponent provides printing services to DSP/BIOS™ LINK.

8.1 Resources Available

Linux provides printk () for printing messages from the kernel side sources on the
target terminal. Also, printf () is available for displaying messages from the user
side. This sub-component uses these functions to provide the required services.

8.2 Dependencies

8.2.1 Subordinates
None.

8.2.2 Preconditions
None.

8.3 Description

This component can be used from both user as well as kernel space. The user/kernel
distinction is based on the TRACE_KERNEL/TRACE_USER definitions. Based on these
definitions this sub-component either uses printk () or printf ().

Version 1.30 Page 60 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

8.4 API Definition

8.4.1 PRINT Initialize
Initializes the PRINT sub-component.

Syntax
DSP_STATUS PRINT _Initialize () ;

Arguments
None.

Return Values

DSP_SOK Operation successfully completed.

DSP_EFAIL General error from GPP-0OS
Comments

None.

Constraints
None.

See Also
None.

8.4.2 PRINT_Finalize
Releases resources used by this sub-component.

Syntax
DSP_STATUS PRINT_Finalize () ;

Arguments
None.

Return Values

DSP_SOK Operation successfully completed.

DSP_EFAIL General error from GPP-0OS
Comments

None.

Constraints
None.

See Also
None.

Version 1.30 Page 61 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

8.4.3 PRINT_Printf
Provides standard printf functionality abstraction.

Syntax
Void PRINT_Printf (Pstr format, ...) ;
Arguments
IN Pstr format
Format string to be used for formatted display
IN

Variable list of arguments

Return Values

None.

Comments
Based on TRACE_KERNELor TRACE_KERNELthis function uses either printk () or
printf () for displaying the print messages.

Constraints
None.

See Also
None.

Version 1.30 Page 62 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

9 SYNC

This component provides synchronization APIs to DSP/BIOS™ Link. Synchronization
APIs of this component can be classified broadly in two categories.

1. Semaphores
2. Event Based Synchronization

3. Critical Section and spin-lock based Mutual Exclusion

91 Resources Available

Linux provides APIs for counting and binary semaphores. These have been used in
implementing the functionality of this sub-component.

In addition, the OS facility for spin-lock has been used to provide the highest level of
protection against tasks, DPCs and ISRs.

9.2 Dependencies

9.2.1 Subordinates
TRC, MEM.

9.2.2 Preconditions
None.

9.3 Description
None.

9.4 Constants & Enumerations

9.4.1 SyncSemType
This enumeration defines the possible types of semaphores that can be created.

Definition
typedef enum {
SyncSemType_Binary =0,
SyncSemType_Counting =1

} SyncSemType ;
Fields
SyncSemType_Binary Indicates that the semaphore is a binary
semaphore.
SyncSemType_Counting Indicates that the semaphore is a counting
semaphore.
Comments

The semaphore type is stored within the SyncSemObject . It indicates the type of the
semaphore to be created, when passed to SYNC CreateSEM () through the flags
field of the SyncAttrs

Version 1.30 Page 63 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Constraints
None.

See Also
SyncAttrs
SyncSemObject
SYNC_CreateSEM ()

Version 1.30 Page 64 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

9.5 Typedefs and Data Structures

9.5.1 SyncAttrs

This object contains various attributes of SYNC object.
Definition

typedef struct SyncAttrs_tag {

Uintlé flag ;
} SyncAttrs ;

Fields

This flag is used by the various SYNC functions and its

flags
g usage is dependent on the function using it.

Comments
None.

See Also

SYNC_OpenEvent ()
SYNC_CreateSEM ()

9.5.2 SyncEvObject
This object is used for various event related API.

Definition
struct SyncEvObject_tag {
Uint32 signature ;
struct semaphore eventSem :
Bool timeoutOccurred ;
}s
Fields
signature Used for identification of this object.
eventSem OS specific semaphore object.
timeoutOccurred Indicates that timeout had occurred.
Comments
None.
See Also
None.

9.5.3 SyncCSObject
This object is used by various CS API's.
Definition

struct SyncCsObject_tag {
Uint32 signature ;

Version 1.30 Page 65 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

struct semaphore sem ;

} 1
Fields
signature Used for identification of this object.
sem OS specific semaphore that is used to implement CS API.
Comments
None.
See Also
None.

9.5.4 SyncSemObject
This object is used by various SEM API's.

Definition
struct SyncSemObject_tag {
Uint32 signature ;
SyncSemType semType ;
Bool isSemAvailable ;
struct semaphore sem ;
Bool timeoutOccurred ;
s
Fields
signature For identification of this object.
semType Indicates the type of the semaphore (binary or counting).
Flag to indicate if the binary semaphore is available.
isSemAuvailable If flag is TRUE then semaphore is available.
If flag is FALSE then semaphore is not available.
sem 0OS specific semaphore.
timeoutOccurred Indicates that timeout had occurred.
Comments
None.
See Also
None.

Version 1.30 Page 66 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

9.6 API Definition

9.6.1 SYNC lInitialize
Initializes SYNC sub-component by allocating all resources.

Syntax
DSP_STATUS SYNC_Initialize () ;

Arguments
None.
Return Values

DSP_SOK Operation successfully completed.

Comments
None.

Constraints
None.

See Also
SYNC_Finalize

9.6.2 SYNC_Finalize

Releases all the resources used by the SYNC sub-component.

Syntax
DSP_STATUS SYNC_Finalize () ;

Arguments
None.
Return Values
DSP_SOK Operation successfully completed.

Comments
None.

Constraints
None.

See Also
SYNC _Initialize
9.6.3 SYNC_OpenEvent

Creates and initializes an event object for thread synchronization. The event is
initialized to a non-signaled state.

Version 1.30 Page 67 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES

INSTRUMENTS OS ADAPTATION LAYER FOR LINUX
Syntax
DSP_STATUS SYNC_OpenEvent (SyncEvObject ** event, S yncAttrs * attr) ;
Arguments
ouT SyncEvObject ** event

OUT argument to store the newly created event object

IN SyncAttrs * attr

Reserved for future use

Return Values

DSP_SOK Operation successfully completed.
DSP_EFAIL General error from GPP-0OS.
DSP_EMEMORY Operation failed due to insufficient memory.
DSP_EPOINTER Invalid pointer passed

Comments
None.

Constraints

event must be valid.
attr must be valid.

See Also
SYNC_CloseEvent

9.6.4 SYNC_CloseEvent

Closes the handle corresponding to an event. It also frees the resources allocated, if
any, during call to SYNC_OpenEvent ()

Syntax

DSP_STATUS SYNC_CloseEvent (SyncEvObject * event) ;
Arguments

IN SyncEvObject * event

Event to be closed

Return Values

DSP_SOK Operation successfully completed.
DSP_EFAIL General error from GPP-0OS.
DSP_EPOINTER Invalid pointer passed

Version 1.30 Page 68 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Comments
None.

Constraints
event must be a valid object.

See Also
SYNC_OpenEvent

9.6.5 SYNC_ResetEvent
Resets the synchronization object to non-signaled state.

Syntax

DSP_STATUS SYNC_ResetEvent (SyncEvObject * event) ;
Arguments

IN SyncEvObject * event

Event to be reset

Return Values

DSP_SOK Operation successfully completed.
DSP_EFAIL General error from GPP-0OS.
DSP_EPOINTER Invalid pointer passed

Comments
None.

Constraints
event must be a valid object.

See Also
SYNC_SetEvent

9.6.6 SYNC_SetEvent
Sets the state of synchronization object to signaled and unblocks all threads waiting

for it.
Syntax

DSP_STATUS SYNC_SetEvent (SyncEvObject * event);
Arguments

IN SyncEvObject * event

Event to be set

Version 1.30 Page 69 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Return Values

DSP_SOK Operation successfully completed.
DSP_EFAIL General error from GPP-0OS.
DSP_EPOINTER Invalid pointer passed

Comments
None.

Constraints
event must be a valid object.

See Also
SYNC_ResetEvent
9.6.7 SYNC_WaitOnEvent

Waits for an event to be signaled for a specified amount of time. It is also possible to
wait infinitely. This function must 'block' and not 'spin'.

Sy DSP_STATUS SYNC_WaitOnEvent (SyncEvObject * event, Uint32 timeout) ;
Arguments
IN SyncEvObject * event
Event to be waited upon
IN Uint32 timeout

Timeout value

Return Values

DSP_SOK Operation successfully completed.

DSP_EFAIL General error from GPP-0OS.

DSP_EPOINTER Invalid pointer passed.

DSP_ETIMEOUT Timeout occured while performing operation.
Comments

This function ‘block’s and does not 'spin' while waiting on the event.

Constraints
event must be a valid object.

See Also
SYNC_WaitOnMultipleEvents

Version 1.30 Page 70 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

9.6.8 SYNC_WaitOnMultipleEvents
Waits on multiple events. Returns when any of the events is set.

Syntax
DSP_STATUS SYNC_WaitOnMultipleEvents (SyncEvObject ** syncEvents,
uint32 count,
Uint32 timeout,
uint32 * index) ;
Arguments
IN SyncEvObject ** syncEvents
Array of events to be waited upon
IN Uint32 count
Number of events
IN Uint32 timeout
Timeout value for wait
ouT uint32 * index

OUT argument to store the index of event that is set

Return Values

DSP_SOK Operation successfully completed.

DSP_EFAIL General error from GPP-0S.

DSP_EPOINTER Invalid pointer passed.

DSP_ETIMEOUT Timeout occured while performing operation.
Comments

This function is not implemented in the Linux port of OSAL.

Constraints
event must be a valid object.

See Also
SYNC_WaitOnEvent

9.6.9 SYNC_CreateCS
Initializes the Critical section structure.

Syntax

DSP_STATUS SYNC_CreateCS (SyncCsObject ** cSObj) ;
Arguments

ouT SyncCsObject ** cSObj

Version 1.30 Page 71 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Structure to be initialized.

Return Values

DSP_SOK Operation successfully completed.
DSP_EFAIL General error from GPP-0OS.
DSP_EMEMORY Operation failed due to insufficient memory.
DSP_EPOINTER Invalid pointer passed.

Comments

This function creates a semaphore object to implement critical sections APIs.

Constraints
cSObj must be a valid object.

See Also
SYNC_DeleteCS

9.6.10 SYNC_DeleteCS
Deletes the critical section object.

Syntax

DSP_STATUS SYNC_DeleteCS (SyncCsObject * cSObj) ;
Arguments

IN SyncCsObiject * cSObj

Critical section to be deleted.

Return Values

DSP_SOK Operation successfully completed.
DSP_EFAIL General error from GPP-0OS.
DSP_EPOINTER Invalid pointer passed.

Comments
None.

Constraints
cSObj must be a valid object.

See Also
SYNC_CreateCS

Version 1.30 Page 72 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

9.6.11 SYNC_EnterCS

This function enters the critical section that is passed as argument to it. After
successful return of this function no other thread can enter until this thread exits the
critical section by calling SYNC_LeaveCS () .

Syntax

DSP_STATUS SYNC_EnterCS (SyncCsObject * cSObj) ;
Arguments

IN SyncCsObject * cSObj

Critical section to enter.

Return Values

DSP_SOK Operation successfully completed.
DSP_EFAIL General error from GPP-0OS.
DSP_EPOINTER Invalid pointer passed.

Comments
This function does a ‘down_interruptible ()’ call on the semaphore.

Constraints

cSObj must be a valid object.

See Also
SYNC_LeaveCS

9.6.12 SYNC_LeaveCS
This function makes the critical section available for other threads to enter.

Syntax

DSP_STATUS SYNC_LeaveCS (SyncCsObject * cSObj) ;
Arguments

IN SyncCsObject * cSObj

Critical section to leave.

Return Values

DSP_SOK Operation successfully completed.
DSP_EFAIL General error from GPP-0OS.
DSP_EMEMORY Operation failed due to insufficient memory
DSP_EPOINTER Invalid pointer passed.

Version 1.30 Page 73 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Comments

This function does an ‘up ()’ call on the semaphore to allow access to the critical
section by other waiting threads.

Constraints

cSObj must be a valid object.

See Also
SYNC_EnterCS

9.6.13 SYNC_CreateSEM
Creates the semaphore object.

Sy DSP_STATUS SYNC_CreateSEM (SyncSemObject ** semObj, SyncAttrs * attr)
Arguments
ouT SyncSemObject ** semObj
Location to receive the pointer to the created semaphore object.
IN SyncAttrs * attr

Attributes to specify the kind of semaphore required to be created.

For binary semaphores flag field in the attr should be set to
SyncSemType_Binary

For counting semaphores flag field in the attr should be set to
SyncSemType_Counting

Return Values

DSP_SOK Semaphore object successfully created.
SYNC_E_FAIL General error from GPP-0OS.
DSP_EINVALIDARG Invalid arguments passed.
DSP_EMEMORY Operation failed due to insufficient memory.
DSP_EPOINTER Invalid pointer passed.

Comments
None.

Constraints
semObj must be a valid object.

attr must not be NULL.

See Also
SYNC_DeleteSEM

Version 1.30 Page 74 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

9.6.14 SYNC_DeleteSEM
Deletes the semaphore object.

Syntax

DSP_STATUS SYNC_DeleteSEM (SyncSemObiject * semObj) ;
Arguments

IN SyncSemObject * semObj

Pointer to semaphore object to be deleted.

Return Values

DSP_SOK Semaphore object successfully deleted.
SYNC_E_FAIL General error from GPP-0OS.
DSP_EPOINTER Invalid pointer passed.

Comments
None.

Constraints

semObj must be a valid object.

See Also
SYNC_CreateSEM

9.6.15 SYNC_WaitSEM
This function waits on the semaphore.

Sy DSP_STATUS SYNC_WaitSEM (SyncSemObject * semObj, Ui nt32 timeout) ;
Arguments
IN SyncSemObject * semObj
Pointer to semaphore object on which function will wait.
IN uint32 timeout

Timeout value.

Return Values

DSP_SOK Operation successfully completed.
SYNC_E_FAIL General error from GPP-0S.

DSP_ETIMEOUT Timeout occured while performing operation.
DSP_EPOINTER Invalid pointer passed.

Version 1.30 Page 75 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Comments
None.

Constraints
semObj must be a valid object.

See Also
SYNC_SignalSEM

9.6.16 SYNC_SignalSEM
This function signals the semaphore and makes it available for other threads.

Syntax

DSP_STATUS SYNC_SignalSEM (SyncSemObject * semObj) ;
Arguments

IN SyncSemObject * semObj

Pointer to semaphore object to be signalled.

Return Values

DSP_SOK Operation successfully completed.

SYNC_E_FAIL General error from GPP-0OS.

DSP_EPOINTER Invalid pointer passed.

DSP_EMEMORY Operation failed due to memory error.
Comments

None.

Constraints
semObj must be a valid object.

See Also
SYNC_WaitSEM
9.6.17 SYNC_SpinLockStart

Begin protection of code through spin lock with all ISRs disabled. Calling this API
protects critical regions of code from preemption by tasks, DPCs and all interrupts.

Syntax
Uint32 SYNC_SpinLockStart () ;

Arguments
None.

Version 1.30 Page 76 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Return Values

irgFlags On success.

Comments
This API can be called from DPC context.

Constraints
None.

See Also
SYNC_SpinLockEnd

9.6.18 SYNC_SpinLockEnd
End protection of code through spin lock with all ISRs disabled.

Syntax

Void SYNC_SpinLockEnd (Uint32 irgFlags) ;
Arguments

IN Uint32 irgFlags

Pointer to semaphore object to be signalled.

Return Values
None.

Comments
This API can be called from DPC context.

Constraints

None.

See Also
SYNC_SpinLockStart

9.6.19 SYNC_ProtectionStart
Marks the start of protected code execution.

Syntax
Void SYNC_ProtectionStart () ;

Arguments
None.

Return Values
None.

Version 1.30 Page 77 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Comments

DSP/BIOS Link implements DPC using tasklets . This function acheives protection by
disabling DPCs.

Constraints
None.

See Also
None.

9.6.20 SYNC_ProtectionEnd

Marks the end of protected code execution.

Syntax
Void SYNC_ProtectionEnd () ;

Arguments
None.

Return Values
None.

Comments
DSP/BIOS Link implements DPC using tasklets. This function enables DPCs.

Constraints
None.

See Also
None.

Version 1.30 Page 78 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

10

10.1

10.2

10.2.1

10.2.2

10.3

TRC

This subcomponent provides the functionality to print debug messages on the target
terminal.

Resources Available

This subcomponent doesn’t need any operating system specific resources. It uses
services from the PRINT subcomponent to print debug messages on the target
terminal.

Dependencies

Subordinates
MEM, PRINT.

Preconditions
None.

Description

The TRC Object is a global structure, common for all components and their
corresponding sub-components. When debug messages need to be printed, the TRC
object is first checked to see if each component and its subcomponents are
permitted to print. For each enabled component and subcomponent the
corresponding debug messages are printed depending on the severity associated
with the individual messages and the requested severity that is set in the TRC
Object.

Version 1.30 Page 79 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

10.4 Typedefs and Data Structures

10.4.1 TrcObject

TRC Object that stores the severity and component and subcomponent maps on a
global level.

Definition
typedef struct TrcObject_tag {
Uint16 components ;

Uint16 level :
Uintl6 subcomponents[MAX_COMPONENTS];
} TrcObject ;
Fields
Indicates which components (PM, LDRV, OSAL) are
components enabled to
print debug messages.
Defines the level of serverity which is used to decide the
level level of
debug printing.
Indicates which subcomponents (PROC, CHNL, IO, DSP in
subcomponents ! P
P the case of LDRV) are enabled to print debug messages.
Comments

This object stores information related to a debug trace mechanism.

MAX_COMPONENT&dicates the maximum number of components.

Version 1.30 Page 80 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

10.5 API Definition

10.5.1 TRC_OPrint

Prints a null terminated character string based on its severity, the subcomponent and
component it is associated with.

Syntax
Void TRC_OPrint (Uint32 componentMap,
Uintlé severity,
Char8 * debugString) ;

Arguments
IN Uint32 componentMap
The component and subcomponent to which this print belongs
IN Uint16 severity
The severity associated with the print
IN Char8 * debugString

The null terminated character string to be printed

Return Values
None.

Comments

This function is used to print only a string without any additional arguments.

Constraints
The character string is valid.

See Also
TRC_1Print

TRC_2Print
TRC_3Print
TRC_4Print
TRC_5Print
TRC_6Print

10.5.2 TRC_1Print

Prints a null terminated character string and an integer argument based on its
severity, the subcomponent and component it is associated with.

Syntax
Void TRC_1Print (Uint32 componentMap,
Uintl6 severity,
Char8 * debugsString,

Version 1.30 Page 81 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Uint32 argumentl) ;

Arguments
IN Uint32 componentMap
The component and subcomponent to which this print belongs
IN Uint16 severity
The severity associated with the print
IN Char8 * debugString
The null terminated character string to be printed
IN Uint32 argumentl

The integer argument to be printed

Return Values
None.

Comments
This function is used to print a string with one integer argument.

Constraints
The character string is valid.

See Also
TRC_OPrint
TRC_2Print
TRC_3Print
TRC_4Print
TRC_5Print
TRC_6Print

10.5.3 TRC_2Print

Prints a null terminated character string and two integer arguments based on its
severity, the subcomponent and component it is associated with.

Syntax
Void TRC_2Print (Uint32 componentMap,
Uintlé severity,
Char8 * debugString,
Uint32 argumentl,
Uint32 argument?2) ;

Arguments
IN Uint32 componentMap
The component and subcomponent to which this print belongs
IN Uintl6 severity

Version 1.30 Page 82 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

The severity associated with the print

IN Char8 * debugString

The null terminated character string to be printed

IN Uint32 argumentl

The first integer argument to be printed

IN Uint32 argument2

The second integer argument to be printed

Return Values
None.

Comments
This function is used to print a string with two integer arguments.

Constraints
The character string is valid.

See Also
TRC_OPrint
TRC_1Print
TRC_3Print
TRC_4Print
TRC_5Print
TRC_6Print

10.5.4 TRC_3Print

Prints a null terminated character string and three integer arguments based on its
severity, the subcomponent and component it is associated with.

Syntax
Void TRC_3Print (Uint32 componentMap,
Uintlé severity,
Char8 * debugString,
Uint32 argumentl,
Uint32 argument2,
Uint32 argument3) ;

Arguments
IN uint32 componentMap
The component and subcomponent to which this print belongs
IN Uintl6 severity
The severity associated with the print
IN Char8 * debugString

Version 1.30 Page 83 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

The null terminated character string to be printed

IN Uint32 argumentl

The first integer argument to be printed

IN Uint32 argument2

The second integer argument to be printed

IN Uint32 argument3

The third integer argument to be printed

Return Values
None.

Comments

This function is used to print a string with three integer arguments.

Constraints
The character string is valid.

See Also
TRC_OPrint
TRC_1Print
TRC_2Print
TRC_4Print
TRC_5Print
TRC_6Print

10.5.5 TRC_4Print

Prints a null terminated character string and four integer arguments based on its
severity, the subcomponent and component it is associated with.

Syntax
Void TRC_4Print (Uint32 componentMap,

Uintlé severity,

Char8 * debugString,

Uint32 argumentl,

Uint32 argument2,

Uint32 argument3,

Uint32 argument4) ;

Arguments
IN Uint32 componentMap
The component and subcomponent to which this print belongs
IN Uintl6 severity

The severity associated with the print

Version 1.30 Page 84 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

IN Char8 * debugString

The null terminated character string to be printed

IN Uint32 argumentl

The first integer argument to be printed

IN Uint32 argument2

The second integer argument to be printed

IN Uint32 argument3

The third integer argument to be printed

IN uint32 argument4

The fourth integer argument to be printed

Return Values
None.

Comments
This function is used to print a string with four integer arguments.

Constraints
The character string is valid.

See Also
TRC_OPrint
TRC_1Print
TRC_2Print
TRC_3Print
TRC_5Print
TRC_6Print

10.5.6 TRC_5Print

Prints a null terminated character string and five integer arguments based on its
severity, the subcomponent and component it is associated with.

Syntax
Void TRC_5Print (Uint32 componentMap,

Uintlé severity,

Char8 * debugString,
Uint32 argumentl,
Uint32 argument2,
Uint32 argument3,
Uint32 argument4,
Uint32 arguments) ;

Arguments

IN Uint32 componentMap

Version 1.30 Page 85 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

The component and subcomponent to which this print belongs

IN Uintl6 severity

The severity associated with the print

IN Char8 * debugString

The null terminated character string to be printed

IN Uint32 argumentl

The first integer argument to be printed

IN Uint32 argument?2

The second integer argument to be printed

IN Uint32 argument3

The third integer argument to be printed
IN Uint32 argument4

The fourth integer argument to be printed

IN Uint32 argument5

The fifth integer argument to be printed

Return Values
None.

Comments
This function is used to print a string with five integer arguments.

Constraints
The character string is valid.

See Also
TRC_OPrint
TRC_1Print
TRC_2Print
TRC_3Print
TRC_4Print
TRC_6Print

10.5.7 TRC_6Print

Prints a null terminated character string and six integer arguments based on its
severity, the subcomponent and component it is associated with.

Syntax
Void TRC_6Print (Uint32 componentMap,
Uintl6 severity,
Char8 * debugsString,

Version 1.30 Page 86 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Uint32 argumentl,
Uint32 argument2,
Uint32 argument3,
Uint32 argument4,
Uint32 arguments,
Uint32 argumente6) ;

Arguments
IN Uint32 componentMap
The component and subcomponent to which this print belongs
IN Uint16 severity
The severity associated with the print
IN Char8 * debugString
The null terminated character string to be printed
IN Uint32 argumentl
The first integer argument to be printed
IN Uint32 argument?2
The second integer argument to be printed
IN Uint32 argument3
The third integer argument to be printed
IN Uint32 argument4
The fourth integer argument to be printed
IN Uint32 argument5
The fifth integer argument to be printed
IN Uint32 Argument6

The sixth integer argument to be printed

Return Values
None.

Comments
This function is used to print a string with six integer arguments.

Constraints
The character string is valid.

See Also
TRC_OPrint
TRC_1Print

Version 1.30 Page 87 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

TRC_2Print
TRC_3Print
TRC_4Print
TRC_5Print

10.5.8 TRC_Enable
Enables debug prints on a component and sub-component level.

Syntax

DSP_STATUS TRC_Enable (Uint32 componentMap) ;
Arguments

IN Uint32 componentMap

The component and subcomponent map

Return Values

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument to function call.

DSP_EFAIL Operation not successful.
Comments

Note that this function must be used to enable subcomponents belonging to the
same component. On the same lines each component must be enabled individually.

Constraints
None.

See Also

TRC_Disable
TRC_SetSeverity

10.5.9 TRC_Disable
Disables debug prints on a component and sub-component level.

Syntax

DSP_STATUS TRC_Disable (Uint32 componentMap) ;
Arguments

IN Uint32 componentMap

The component and subcomponent map

Return Values

DSP_SOK Operation successfully completed.
DSP_EINVALIDARG Invalid argument to function call.
DSP_EFAIL Operation not successful.

Version 1.30 Page 88 of 89

¢ DSP/BIOS™ LINK
TExAs LNK 024 DES
INSTRUMENTS 0S ADAPTATION LAYER FOR LINUX

Comments

Note that this function must be used to disable subcomponents belonging to the
same component. On the same lines each component must be disabled individually.

Constraints
None.

See Also

TRC_Enable
TRC_SetSeverity

10.5.10 TRC_SetSeverity
Sets the severity level of the required debug prints.

Syntax

DSP_STATUS TRC_SetSeverity (Uint16 level) ;
Arguments

IN Uint32 level

The severity level of the debug prints required

Return Values

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument to function call.

DSP_EFAIL Operation not successful.
Comments

None.

Constraints
None.

See Also

TRC_Enable
TRC_Disable

Version 1.30 Page 89 of 89

	Introduction
	Purpose and Scope
	Terms and Abbreviations
	References
	Overview

	CFG
	Resources Available
	Dependencies
	Subordinates
	Preconditions

	Description
	Typedefs and Data Structures
	CFG_Driver
	CFG_Gpp
	CFG_Dsp
	CFG_Link
	CFG_MmuEntry
	CFG_Mqa
	CFG_Mqt

	API Definition
	CFG_Initialize
	CFG_Finalize
	CFG_GetRecord
	CFG_GetNumValue
	CFG_GetStrValue

	DPC
	Resources Available
	Dependencies
	Subordinates
	Preconditions

	Description
	Typedefs and Data Structures
	DpcObject
	DPC_DpcTaskletInfo

	API Definition
	DPC_Initialize
	DPC_Finalize
	DPC_Create
	DPC_Delete
	DPC_Cancel
	DPC_Schedule
	DPC_Debug
	DPC_Callback
	FnDpcProc

	ISR
	Resources Available
	Dependencies
	Subordinates
	Preconditions

	Description
	Typedefs and Data Structures
	IsrProc
	IsrObject
	InterruptInfo

	API Definition
	ISR_Initialize
	ISR_Finalize
	ISR_Create
	ISR_Delete
	ISR_Install
	ISR_Uninstall
	ISR_Disable
	ISR_Enable
	ISR_GetState
	ISR_Callback

	KFILE
	Resources Available
	Dependencies
	Subordinates
	Preconditions

	Description
	Typedefs and Data Structures
	KFileObject_tag

	API Definition
	KFILE_Initialize
	KFILE_Finalize
	KFILE_Open
	KFILE_Close
	KFILE_Read
	KFILE_Seek
	KFILE_Tell

	MEM
	Resources Available
	Dependencies
	Subordinates
	Preconditions

	Description
	Typedefs and Data Structures
	MemAllocAttrs
	MemFreeAttrs
	MemMapInfo
	MemUnmapInfo

	API Definition
	MEM_Initialize
	MEM_Finalize
	MEM_Alloc
	MEM_Calloc
	MEM_Free
	MEM_Map
	MEM_Unmap
	MEM_Copy
	MEM_Debug

	PRCS
	Resources Available
	Dependencies
	Subordinates
	Preconditions

	Description
	Typedefs and Data Structures
	PrcsObject

	API Definition
	PRCS_Initialize
	PRCS_Finalize
	PRCS_Create
	PRCS_Delete
	PRCS_IsEqual
	PRCS_IsSameContext

	PRINT
	Resources Available
	Dependencies
	Subordinates
	Preconditions

	Description
	API Definition
	PRINT_Initialize
	PRINT_Finalize
	PRINT_Printf

	SYNC
	Resources Available
	Dependencies
	Subordinates
	Preconditions

	Description
	Constants & Enumerations
	SyncSemType

	Typedefs and Data Structures
	SyncAttrs
	SyncEvObject
	SyncCSObject
	SyncSemObject

	API Definition
	SYNC_Initialize
	SYNC_Finalize
	SYNC_OpenEvent
	SYNC_CloseEvent
	SYNC_ResetEvent
	SYNC_SetEvent
	SYNC_WaitOnEvent
	SYNC_WaitOnMultipleEvents
	SYNC_CreateCS
	SYNC_DeleteCS
	SYNC_EnterCS
	SYNC_LeaveCS
	SYNC_CreateSEM
	SYNC_DeleteSEM
	SYNC_WaitSEM
	SYNC_SignalSEM
	SYNC_SpinLockStart
	SYNC_SpinLockEnd
	SYNC_ProtectionStart
	SYNC_ProtectionEnd

	TRC
	Resources Available
	Dependencies
	Subordinates
	Preconditions

	Description
	Typedefs and Data Structures
	TrcObject

	API Definition
	TRC_0Print
	TRC_1Print
	TRC_2Print
	TRC_3Print
	TRC_4Print
	TRC_5Print
	TRC_6Print
	TRC_Enable
	TRC_Disable
	TRC_SetSeverity

