

Template Version 1.2

Version
1.65.00.02

Page 1 of 59 Texas Instruments Proprietary Information

DESIGN DOCUMENT

DSP/BIOS™ LINK

MPCS DESIGN

LNK 133 DES

Version 1.65.00.02

Page 2 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

This page has been intentionally left blank.

Page 3 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

This page has been intentionally left blank.

Page 5 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

1 Introduction ... 6
1.1 Purpose & Scope ... 6
1.2 Terms & Abbreviations ... 6
1.3 References ... 6
1.4 Overview.. 6

2 Requirements ... 7

3 Assumptions... 8

4 Constraints ... 8

5 MPCS High Level Design ... 9
5.1 Introduction.. 9
5.2 Current MPCS design Issues ..10
5.3 MPCS Bug details ...11
5.4 Design Goals..11
5.5 Code Flow ...12
5.6 MPCS Re-Design Solutions...12
5.7 MPCS -OS Dependent design implementation...13

6 Sequence Diagrams.. 14

7 Low level design... 15
7.1 Constants & Enumerations...15
7.2 Typedefs & Data Structures ...18
7.3 API Definition...25

8 Internal Discussions... 39
8.1 IDM module...39
8.2 SYNC_USR module ...50
8.3 MPCS API flow..59

Page 6 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

1 Introduction

1.1 Purpose & Scope

This document describes the design and interface definition of the multi-processor

critical section component.

The document is targeted at the development team of DSP/BIOS™ LINK.

1.2 Terms & Abbreviations

DSPLINK DSP/BIOS™ LINK

MPCS Multi-processor Critical Section

SMA Shared Memory Allocator

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

1.3 References

1. LNK 084 PRD DSP/BIOS™ LINK Product Requirement Document

2. LNK 082 DES POOL Design Document

3. LNK 132 DES PCI Driver Redesign

4. LNK 207 DES Configurable TSK and SWI approach

1.4 Overview

DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit

that simplifies the development of embedded applications in which a general-purpose

microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK

provides control and communication paths between GPP OS threads and DSP/BIOS™

tasks, along with analysis instrumentation and tools.

This module provides the design for multi-processor critical section (MPCS)

component.

This document gives an overview of the MPCS component on the GPP and DSP-sides

of DSPLINK. The document also gives a detailed design of the MPCS component.

Page 7 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

2 Requirements

Please refer to section 16.3 of LNK 084 PRD - DSP/BIOS™ LINK Product Requirement

Document.

On devices with shared memory, applications may need to define their own data

structures on shared memory. Such data structures can be used for communicating

small pieces of information between the processors. However, applications need to

ensure mutually exclusive access to such data structures to ensure consistency of

data. To enable such scenarios, the product shall provide a new module that

provides this functionality.

R110 This release shall support management of a shared memory specific lock on

devices that support shared memory.

R111 The APIs shall enable applications to acquire and release the lock in an

efficient manner.

R112 The APIs shall allow protected access to the data structures from processes

running on remote processor as well as on the same processor.

In addition, the MPCS component must meet the following generic requirements:

1. The API exported by the MPCS component shall be common across different GPP

operating systems.

2. Both the DSP as well as the GPP side shall expose same API.

3. Multiple threads can perform lock and unlock operations on the MPCS objects

created in the system. However, ownership shall come into play while

creation/deletion of the MPCS object. The processor which creates the MPCS

object shall be the one which deletes it.

Page 8 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

3 Assumptions

The MPCS design makes the following assumptions:

1. The hardware allows provision of a buffer pool, to which both the GPP and the

DSP have access.

4 Constraints
� The MPCS object must be allocated and freed through POOL APIs provided by

DSPLINK. Elements allocated through the POOL API can be accessed by multiple

processors. Any other means for memory allocation (for example: standard OS

calls) will fail as the elements cannot be accessed across processors.

� The user has to use unique identifier to identify individual MPCS objects across

the system.

Page 9 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

5 MPCS High Level Design

5.1 Introduction
In a multiprocessor system having shared access to a memory region, a multi-

processor critical section between GPP and DSP can be implemented. This MPCS

object can be used by applications to provide mutually exclusive access to a shared

region between multiple processors, and multiple processes on each processor. In

cases where a shared memory region does not exist, the module shall internally

perform the synchronization required to provide the protection required by the MPCS

component.

� Multi-processor critical section (MPCS) between GPP and DSP.

� Achieves mutually exclusive access to shared objects (data structures, buffers,

peripherals etc.)

OS specific Level 1 protection to protect access to shared resource between tasks on

ARM core.

DSP/BIOS specific Level 1 protection to protect access to shared resource between tasks

on DSP core.

The MPCS component provides the following functionality to user applications:

� Creation of an MPCS object identified by a system-wide unique name.

� Deletion of an MPCS object identified by a system-wide unique name.

� Opening the MPCS object identified by a system-wide unique name, to get a

handle to it. The handle returned by this API can be used for accessing the MPCS

object in the process space of the caller.

� Entering the critical section specified by the MPCS object handle.

� Closing the MPCS object identified by its handle.

Shared Object

Client 1

Client n

GPP DSP

Client 1

Client n

MPCS_enter
MPCS_leave

MPCS_enter
MPCS_leave

MPCS_enter
MPCS_leave

MPCS_enter
MPCS_leave

Page 10 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

If provided by the user, the memory required for the MPCS object must be allocated

from a shared pool. Alternatively, if no memory is provided during creation of the

object, the pool ID specified is used to internally allocate the MPCS object.

5.2 Current MPCS design Issues

MPCS enters the deadlock and priority inversion situation between the tasks at the GPP and

DSP Level.

Please find below certain examples where a possibility of inversion/deadlock in earlier

design is possible.

5.2.1 Global priority inversion:

1. DSP side in DSPLink API uses the default SWI mode

2. GPP-side can be preempted after taking MPCS lock

� Process/thread that has taken the user/kernel MPCS lock can be preempted by a

higher priority process/thread

� DSP-side may now try to take the same MPCS lock

� Results in scheduler disable till GPP-side releases the lock

� If the GPP thread is preempted, this can be non-deterministic

Issue is seen because GPP-side is not using same level of protection as DSP-side

5.2.2 Deadlock situation:

� DSP side in DSPLink API can use either SWI or TSK mode

� The following pre-conditions exist.

o A high priority task on GPP-side shares a resource with a low priority task

on DSP side.

o A low priority task on GPP-side shares a resource with a high priority task

on DSP side.

5.2.2.1 MPCS Deadlock scenario:

Details on scenario causing deadlock

Scenario on ARM:

� Lower priority task 1 on ARM is using MSGQ. This task takes the MSGQ MPCS

lock. After taking the lock this task is pre-empted by higher priority Task 2 on

ARM

� Higher priority task 2 is performing RingIO operations. This RingIO MPCS lock is

different from the MPCS lock.

 Scenario on DSP at the same time:

Page 11 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

� Task B on DSP side is using RingIO. This is a low priority task which is

communicating with its high priority counterpart on Arm i.e. Task 2. This task

takes the RingIO MPCS lock. At this point we have a situation in which

a. Low priority Task 1 pre-empted in MSGQ MPCS on ARM.

b. High priority Task 2 is using RingIO on ARM.

c. Low priority Task B takes the RingIO MPCS.

� Task A is performing MSGQ operation. This is a high priority task which is

communicating with its low priority counterpart on Arm i.e. Task 1.

� At this point we have a situation in which

a. Low priority Task 1 pre-empted while in MSGQ MPCS on ARM

b. High priority Task 2 using RingIO on ARM

c. Low priority Task B takes the RingIO MPCS on DSP.

 d. This is then pre-empted by high priority task a on DSP which desires MSGQ but

gets stuck in MPCS section.

5.3 MPCS Bug details

5.3.1 MPCS Bug ID:

5.3.2 MPCS BUG details
MPCS enters the deadlock and Priority inversion situation between the tasks at the GPP and

DSP Level. Message queue and Ring IO IPC components face deadlock in some cases as

detailed in Deadlock situation:.

5.4 Design Goals

To overcome the issues mentioned in the above section we can implement on both the

cores with the following designs on MPCS.

� Level 1: OS specific protection to protect access to shared resource between

tasks on same core.

a. Use semaphores for task mode, priority ceiling or Interrupt disable for SWI

mode on ARM side.

b. DSP/BIOS APIs to be used to DSP side.

� Level 2: Peterson’s algorithm to protect access to shared resource between tasks

on different core.

Page 12 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

5.5 Code Flow

5.5.1 Introduction

The DSP/BIOS LINK code has two sections GPP and DSP side. GPP side deals with the ARM

side implementations. DSP side is the DSP side implementations.

In GPP side implementations the API folder is the user side implementation. And rests of the

folders are kernel side implementations. DSP side implementation is the complex integration

of DSPLINK protocol implementation using DSP/BIOS APIs.

The GPP and DSP side implement both Task mode and SWI mode for MPCS protection.

5.6 MPCS Re-Design Solutions.

MPCS redesign can be done on two modes.

1. Task and SWI mode on ARM side.

2. Task and SWI mode on DSP side.

5.6.1 Level 1 Protection for Message Queues:

5.6.1.1 ARM side:

Task mode:

� User and Kernel side:

a. Local lock of each MPCS object points to a single global lock used to protect

the MPCS section. This lock is taken in MPCS_enter for every MPCS object.

 SWI mode:

• User and Kernel side:

a. Boost the priority of the task to a highest priority in MPCS_enter.

b. Build option to add priority to be added with the MPCS object for the

backward compatibility

5.6.1.2 DSP Side:

Task mode:

• Local lock of each MPCS object points to a single global lock used to protect the

MPCS section. This lock is taken in MPCS_enter for every MPCS object.

SWI mode:
Scheduler is disabled.

Page 13 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

Note: The Level two protection is implemented using Peterson algorithm.

5.7 MPCS -OS Dependent design implementation.

The ARM side has to be implemented with different APIs specific to the Operating system

supported in the DSPLINK. The OS specific protection to protect access to shared resource

between tasks on same core.

Given below are some of the APIs to be used on various platforms.

� Linux

– User side protection - System 5 semaphores

– Kernel side protection - Mutual exclusion lock - synchronization mechanism

used to serialize the execution of threads using OS API

mutex_lock_interruptible

� PrOS

– User side protection - Critical section using API loc_mutex

– Kernel side protection - Protection with all ISRs disabled - Protects critical

regions of code from preemption by tasks, DPCs and all interrupts using OS

API loc_cpu

� WinCE

– User side protection – Protection using OS API WaitForSingleObject

– Kernel side protection - Protection using OS API EnterCriticalSection

� Other OS

– Task mode: The expectation is that the global lock used should support

nesting.

– Swi mode: The expectation is a design which matches closely to disabling the

scheduler should be used.

Page 14 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

6 Sequence Diagrams

None.

Page 15 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7 Low level design

The MPCS component has the same design on both the GPP and DSP sides. This

section primarily refers to the GPP side design. However, the DSP-side design shall

contain the same enumerations, structures, and API definitions, with minimal

changes for different types on the GPP and DSP-sides.

7.1 Constants & Enumerations

7.1.1 MPCS_NUMENTRIES

Defines the maximum number of MPCS objects that can be created in the system.

Definition

#define MPCS_NUMENTRIES 256

Comments

This definition is present in the header file generated by the configuration script

based on information provided in the configuration file for the platform:

CFG_<platform.TXT. The value of the constant may vary depending on the value

specified by the user in the configuration file.

Constraints

None.

See Also

MPCS_Region

7.1.2 MPCS_TABLE_SIZE

Defines the size of the MPCS region in the shared region containing information

about all MPCS objects

Definition

#define MPCS_TABLE_SIZE sizeof (MPCS_Region)

Comments

This definition gives the size of the MPCS region, used by the DSPLINK static

configuration to calculate the amount of memory that needs to be reserved for the

MPCS component.

Constraints

None.

See Also

MPCS_Region

7.1.3 MPCS_INVALID_ID

Defines an invalid value for identifier(s) used by the MPCS component

Page 16 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

Definition

#define MPCS_INVALID_ID (Uint32) -1

Comments

The invalid ID is used to indicate that an identifier value is not a valid value. For

example, if used as the poolId for the MPCS object, it indicates that a pool was not

used to allocate the object. This is useful for the global MPCS object used for

protecting the MPCS region entries.

Constraints

None.

See Also

None.

7.1.4 MPCS_RESV_LOCKNAME

Defines the special reserved name prefix of the MPCS object(s) which are not stored

in the entries table of the MPCS region.

Definition

#define MPCS_RESV_LOCKNAME "DSPLINK_MPCS_RESERVED"

Comments

This constant is provided to internal users of the MPCS component, where the

memory provided for the MPCS object may not be allocated from a pool, and the

object is not identified by name or stored in the entries table. This reserved prefix is

used for names of such MPCS objects.

Constraints

None.

See Also

MPCS_RESV_LOCKNAMELEN

7.1.5 MPCS_RESV_LOCKNAMELEN

Defines the string length of the special reserved name prefix of the MPCS object(s)

which are not stored in entries table of the MPCS region.

Definition

#define MPCS_RESV_LOCKNAMELEN 17

Comments

This constant is provided to internal users of the MPCS component, where the

memory provided for the MPCS object may not be allocated from a pool, and the

object is not identified by name or stored in the entries table. The reserved prefix of

length defined by this constant is used for the names of such MPCS objects.

Constraints

None.

Page 17 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

See Also

MPCS_RESV_LOCKNAME

Page 18 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.2 Typedefs & Data Structures

7.2.1 MPCS_Attrs

This structure defines the attributes for creation of MPCS object.

Definition

typedef struct MPCS_Attrs_tag {

 Uint16 poolId ;

} MPCS_Attrs ;

Fields

poolId ID of the pool used to allocate the MPCS object.

Comments

The attributes can contain the pool ID specified by the user. This will determine from

which pool the MPCS_create () function will allocate memory for the MPCS.

Constraints

None.

See Also

None.

Page 19 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.2.2 MPCS_Entry

This structure defines the global entry structure for an MPCS object. Every MPCS

object in the system is identified through information present in the entry structure.

Definition

typedef struct MPCS_Entry_tag {

 Uint16 ownerProcId ;

 Uint16 poolId ;

 Pvoid physAddress ;

 Char8 name [DSP_MAX_STRLEN] ;

 ADD_PADDING (padding, MPCS_ENTRY_PADDING)

} MPCS_Entry ;

Fields

ownerProcId ID of the processor that created the MPCS object.

poolId ID of the pool used to allocate the MPCS object.

physAddress Physical address of the MPCS object.

name
Unique system wide name used for identifying the MPCS

object.

padding Padding for alignment, depending on the platform.

Comments

The MPCS entry is created in a region accessible to all processors in the system. This

is used to identify and get information about the MPCS objects created in the

system.

Constraints

None.

See Also

MPCS_Region

Page 20 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.2.3 MPCS_Ctrl

This structure defines the control structure required by the MPCS component. It

contains information about all MPCS objects shared between the GPP and a specific

DSP.

Definition

typedef struct MPCS_Ctrl_tag {

 Uint32 isInitialized ;

 Uint32 dspId ;

 Uint32 maxEntries ;

 Uint32 ipsId ;

 Uint32 ipsEventNo ;

 MPCS_Entry * dspAddrEntry ;

 ADD_PADDING (padding, MPCS_CTRL_PADDING)

 MPCS_ShObj lockObj ;

} MPCS_Ctrl ;

Fields

isInitialized Indicates whether the MPCS region has been initialized.

dspId ID of the DSP with which the MPCS region is shared.

maxEntries Maximum number of MPCS instances supported by the MPCS.

ipsId
ID of the IPS to be used (if any). A value of -1 indicates that

no IPS is required by the MPCS.

ipsEventNo
IPS Event number associated with MPCS (if any). A value of -

1 indicates that no IPS is required by the MPCS.

dspAddrEntry
Pointer to array in DSP address space of MPCS objects that

can be created.

padding Padding for alignment, depending on the platform.

lockObj
MPCS lock object to provide mutually exclusive access to the
MPCS region.

Comments

The MPCS control region is present within a region accessible to all processors in the

system. This is used to identify and get information about the MPCS objects created

in the system. The region is statically reserved through configuration.

Constraints

None.

See Also

MPCS_Entry

Page 21 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.2.4 MPCS_ProcObj

This structure defines an object for a single processor used by the Multiprocessor

Critical Section object.

Definition

typedef struct MPCS_ProcObj_tag {

 Uint32 localLock ;

 Uint16 flag ;

 Uint16 freeObject ;

#if defined (DDSP_PROFILE)

 Uint16 conflicts ;

 Uint16 numCalls ;

#endif

 Uint32 priority;

} MPCS_ProcObj ;

Fields

localLock

Local lock to be used for protection on specific processor. The

value stored also depends on the Operating System being
used.

flag
Flags indicating whether the shared resource is being claimed

by the processor.

freeObject
Contains information about whether the object was allocated

internally, and needs to be freed at the time of MPCS delete.

conflicts
Number of conflicts that occurred in MPCS Enter. Defined

only when profiling is enabled.

numCalls
Number of calls made to MPCS Enter. Defined only when

profiling is enabled.

priority
Priority of the task MPCS task. Defined only when the SWI

mode is enabled.

Comments

The MPCS object contains one MPCS_ProcObj object for each of the processors it

provides mutually exclusive access to the shared objects from.

Constraints

None.

See Also

MPCS_Obj

Page 22 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.2.5 MPCS_ShObj

This structure defines the shared Multiprocessor Critical Section object, which is used

for protecting a specific critical section between multiple processors. The memory for

this object is accessible to the two processors using the MPCS object.

Definition

typedef struct MPCS_ShObj_tag {

volatile MPCS_ProcObj gppMpcsObj ;

 ADD_PADDING (gppPadding, MPCSOBJ_PROC_PADDING)

volatile MPCS_ProcObj dspMpcsObj ;

 ADD_PADDING (dspPadding, MPCSOBJ_PROC_PADDING)

volatile Uint32 mpcsId ;

volatile Uint16 turn ;

 ADD_PADDING (padding, DSPLINK_16BIT_PADDING)

} MPCS_ShObj ;

Fields

gppMpcsObj MPCS object for the GPP processor.

gppPadding Padding for alignment, depending on the platform.

dspMpcsObj MPCS object for the DSP processor.

dspPadding Padding for alignment, depending on the platform.

mpcsId MPCS Identifier for this object.

turn
Indicates the processor that owns the turn to enter the

critical section.

padding Padding for alignment, depending on the platform.

Comments

One MPCS object is used to provide mutually exclusive access to any shared region

between the GPP and DSP.

Constraints

None.

See Also

MPCS_ProcObj

Page 23 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.2.6 MPCS_Obj

This structure defines the Multiprocessor Critical Section object, which is used for

protecting a specific critical section between multiple processors. This object is not

shared between the processors, and the object instance is specific to the process

creating the MPCS object.

Definition

typedef struct MPCS_Obj_tag {

 MPCS_ShObj * mpcsObj ;

 SYNC_USR_CsObject * syncCsObj ;

} MPCS_Obj ;

typedef MPCS_Obj * MPCS_Handle ;

Fields

mpcsObj Handle to the MPCS object in user space of the process.

syncCsObj Handle to the user-side SYNC CS object.

Comments

Each process using the MPCS object opens the MPCS object and gets a handle to the

object in its process space.

On the DSP-side, the MPCS_Obj is the same as the MPCS_ShObj.

Constraints

None.

See Also

MPCS_open ()

Page 24 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.2.7 MPCS_MemInfo

This structure contains memory information for the MPCS component. It is internally

used for mapping the MPCS memory into user space.

Definition

typedef struct MPCS_MemInfo_tag {

 ProcessorId procId ;

 Uint32 physAddr ;

 Uint32 kernAddr ;

 Uint32 userAddr ;

 Uint32 size ;

} MPCS_MemInfo ;

Fields

procId ID of the processor with which the MPCS region is shared

physAddr Physical address of the memory region for RingIO

kernAddr Kernel address of the memory region for RingIO

userAddr User address of the memory region for RingIO

size Size of the memory region for RingIO

Comments

This structure is not required on the DSP-side.

Constraints

None.

See Also

MPCS_init ()

Page 25 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.3 API Definition

7.3.1 _MPCS_init

This function initializes the MPCS component.

Syntax

DSP_STATUS _MPCS_init (ProcessorId procId) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS region is to be shared.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function is called internally by DSPLINK and is not exposed to the user

applications.

This function performs the following operations:

� Map the statically reserved MPCS region to the user space of the calling process.

� Open the MPCS object within the region object used for protection of the MPCS

region.

Constraints

None.

See Also

_MPCS_exit ()

Page 26 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.3.2 _MPCS_exit

This function finalizes the MPCS component.

Syntax

DSP_STATUS _MPCS_exit (ProcessorId procId) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS region is shared.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument

DSP_EMEMORY Operation failed due to a memory error.

DSP_EACCESSDENIED The MPCS component has not been initialized.

DSP_EFAIL General failure.

Comments

This function is called internally by DSPLINK and is not exposed to the user

applications.

This function performs the following operations:

� Close the MPCS object within the region object used for protection of the MPCS

region.

� Unmap the statically reserved MPCS region from the user space of the calling

process.

Constraints

None.

See Also

_MPCS_init ()

Page 27 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.3.3 MPCS_create

This function creates an MPCS object between the calling processor and the

processor whose ID is specified.

Syntax

DSP_STATUS MPCS_create (ProcessorId procId,

 Pstr name,

 MPCS_ShObj * mpcsObj,

 MPCS_Attrs * attrs) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS object is to be shared.

IN Pstr name

System-wide unique name for the MPCS object.

IN OPT MPCS_ShObj * mpcsObj

Pointer to the shared MPCS object. If memory for the MPCS object is

provided by the user, the MPCS object handle is not NULL. Otherwise, if

the memory is to be allocated by the MPCS component, the MPCS object
handle can be specified as NULL.

IN MPCS_attrs * attrs

Attributes for creation of the MPCS object.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument

DSP_EMEMORY Operation failed due to a memory error.

DSP_EALREADYEXISTS The specified MPCS name already exists.

DSP_ERESOURCE All MPCS entries are currently in use.

DSP_EACCESSDENIED The MPCS component has not been initialized.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Acquire lock for the MPCS region.

� Check if the user specified name already exists in the global MPCS region object.

If not, create an entry in the MPCS region.

Page 28 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

� If user has not allocated memory for the MPCS object, allocate memory from the

user specified pool.

� Initialize the MPCS object.

Constraints

The processor that creates the MPCS object must be the same as the processor that

deletes the object.

A call to MPCS_create () must be followed by a call to MPCS_open () to get a handle

to the MPCS object in the user space of the calling process.

See Also

MPCS_delete ()

7.3.3.1 OS specific Implementations

PROS:

GPP side:

• Initialize the localLock variable in the MPCS handle with the handle of the

global mutex created in MPCS_init function.

 DSP side:

• If a global lock does not exist, create it

• Assign the localLock variable in the MPCS handle to the global lock

created.

Page 29 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.3.4 MPCS_delete

This function deletes the specified MPCS object.

Syntax

DSP_STATUS MPCS_delete (ProcessorId procId,

 Pstr name) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS object is to be shared.

IN Pstr name

System-wide unique name for the MPCS object.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument

DSP_EMEMORY Operation failed due to a memory error.

DSP_ENOTFOUND Specified MPCS object name does not exist.

DSP_EACCESSDENIED The MPCS component has not been initialized.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Acquire lock for the MPCS region.

� Entering Task Mode.

 GPP Side:

• None, Global Lock is deleted in MPCS_exit

DSP side:

• Delete the semaphore by calling DSP/BIOS APIs which was taken in

MPCS_create Module.

� Check if the user specified name exists in the global MPCS region object.

� Finalize the MPCS object.

� If the MPCS component had allocated memory for the MPCS object, free the

memory from the pool used for allocating the object.

� Remove the entry in the MPCS region.

� Release lock for the MPCS region.

Page 30 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

Constraints

The processor that creates the MPCS object must be the same as the processor that

deletes the object.

See Also

MPCS_create ()

7.3.4.1 OS specific Implementations

PROS:

� Enter Task Mode.

 GPP side:

• None. The global lock is deleted In MPCS_exit

DSP side:

• None. The global mutex object is not deleted.

Page 31 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.3.5 MPCS_open

This function opens an MPCS object specified by its name and gets a handle to the

object.

Syntax

DSP_STATUS MPCS_open (ProcessorId procId,

 Pstr name,

 MPCS_Handle * mpcsHandle) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS object is to be shared.

IN Pstr name

System-wide unique name for the MPCS object.

OUT MPCS_Handle * mpcsHandle

Location to receive the MPCS object handle, which is valid in the process

space of the calling process.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument

DSP_EMEMORY Operation failed due to a memory error.

DSP_ENOTFOUND Specified MPCS object name does not exist.

DSP_EACCESSDENIED The MPCS component has not been initialized.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Call the internal function _MPCS_open () with the user-specified MPCS name and

NULL handle for address of shared MPCS object.

Constraints

Every process that needs to use the MPCS object must get a handle to the object by

calling this API.

See Also

MPCS_close ()

Page 32 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.3.6 _MPCS_open

This internal function opens an MPCS object specified by its name and gets a handle

to the object. This function allows the user to open an MPCS object by a name with

special reserved prefix MPCS_RESV_LOCKNAME indicating that the object is not

registered within the MPCS entries table. For such objects, the user already has the

pointer to the MPCS shared object in its process space. Every process that needs to

use the MPCS object must get a handle to the object by calling this API.

Syntax

DSP_STATUS _MPCS_open (ProcessorId procId,

 Pstr name,

 MPCS_Handle * mpcsHandle ,

 MPCS_ShObj * mpcsShObj) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS object is to be shared.

IN Pstr name

System-wide unique name for the MPCS object. Specifying the name

with prefix as MPCS_RESV_LOCKNAME expects the user to pass the

pointer to the MPCS shared object through the mpcsShObj parameter.

OUT MPCS_Handle * mpcsHandle

Location to receive the MPCS object handle, which is valid in the process

space of the calling process.

IN OPT MPCS_ShObj * mpcsShObj

Pointer to the MPCS shared object in the caller's process space. This is

an optional argument that is provided if the user already has the pointer

to the MPCS shared object, and wishes to open the specific MPCS

object. This parameter must be specified by the user if the name used is
MPCS_RESV_LOCKNAME.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument

DSP_EMEMORY Operation failed due to a memory error.

DSP_ENOTFOUND Specified MPCS object name does not exist.

DSP_EACCESSDENIED The MPCS component has not been initialized.

DSP_EFAIL General failure.

DSP_SFREE The last close for specified MPCS resulted in it getting

closed.

Page 33 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

Comments

This function performs the following operations:

� Acquire lock for the MPCS region.

� Check if the user has specified the MPCS object name with prefix

MPCS_RESV_LOCKNAME. If yes, use the user-provided mpcsShObj as the

address of the shared MPCS object. If not, check if the user specified name exists

in the global MPCS region object, and translate the physical address of the shared

object to user space.

� Allocate the MPCS object in user process space.

� Get the address of the MPCS object in the user-space of the process through pool

address translation, and return this as the handle to MPCS object.

� For GPP-side: On the user-side, create a SYNC CS object for providing protection

between multiple processes.

� Release lock for the MPCS region.

Constraints

Every process that needs to use the MPCS object must get a handle to the object by

calling this API.

See Also

MPCS_close ()

Page 34 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.3.7 MPCS_close

This function closes an MPCS object specified by its handle.

Syntax

DSP_STATUS MPCS_close (ProcessorId procId,

 MPCS_Handle mpcsHandle) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS object is to be shared.

IN MPCS_Handle mpcsHandle

Handle to the MPCS object to be closed.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument

DSP_EMEMORY Operation failed due to a memory error.

DSP_ENOTFOUND Specified MPCS object not found.

DSP_EACCESSDENIED The MPCS component has not been initialized.

DSP_EFAIL General failure.

DSP_SFREE The last close for specified MPCS resulted in it getting

closed.

Comments

This function performs the following operations:

� Acquire lock for the MPCS region.

� For GPP-side: On the user-side, delete the SYNC CS object used for providing

protection between multiple processes.

� Free the MPCS object allocated within the user process space.

� Release lock for the MPCS region.

Constraints

None.

See Also

MPCS_open ()

Page 35 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.3.8 MPCS_enter

This function enters the critical section specified by the MPCS object.

Syntax

DSP_STATUS MPCS_enter (MPCS_Handle mpcsHandle) ;

Arguments

IN MPCS_Handle mpcsHandle

Handle to the MPCS object.

Return Value

DSP_SOK Operation successfully completed.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Enter task mode.

GPP side

• Wait on the global lock object to take exclusive access to MPCS.

DSP side

• Wait on the semaphore to take the exclusive access to MPCS by calling

DSP/BIOS APIs.

� Enter SWI mode.

GPP side

• If user provides a priority to which priority of current task is to be

boosted that is used. If default value is provided, the highest priority

which the OS allows is used.

DSP side

• Disable the scehduler.

Enter the SWI mode.

� Indicate that the processor needs to use the resource by setting its flag to busy.

� Give away the turn to the other processor.

� Wait while the other process is using the resource and owns the turn.

Constraints

None.

See Also

MPCS_leave ()

Page 36 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.3.8.1 OS specific Implementations

PROS:

� Enter task mode.

GPP side

• Wait on the semaphore to take exclusive access to MPCS by calling

SYNC_WaitSEM.

DSP side

• Wait on the mutex to take the exclusive access to MPCS by calling

DSP/BIOS API LCK_pend().

� Enter SWI mode.

GPP side- Priority ceiling:

Use chg_pri() API to change the priority of the current task, this API has tow

paramters

• Priority: Where the priority value is from the build options of dsplinkcfg.pl.

the priority is updated in the mpcsHandle->gppMpcsObj.priority.

• The task id option is given as TSK_SELF.

DSP side:

• Disable the Software interrupts by calling DSP/BIOS API

SWI_disable().

Page 37 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

7.3.9 MPCS_leave

This function leaves the critical section specified by the MPCS object.

Syntax

DSP_STATUS MPCS_leave (MPCS_Handle mpcsHandle) ;

Arguments

IN MPCS_Handle mpcsHandle

Handle to the MPCS object.

Return Value

DSP_SOK Operation successfully completed.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Indicate that the processor no longer needs to use the resource by resetting its

flag to free.

� Enter Task mode.

GPP side

• Signal mutex to be available for other tasks by calling OS specific APIs.

DSP side:

• Signal mutex to be available for other tasks by calling DSP/BIOS APIs.

� Enter SWI mode.

GPP side:

• Restore back the priority of the calling task to its original value by calling

chg_pri() API.

DSP side:

• To enable all the software interrupts by calling DSP/BIOS APIs.

� Release the user-side SYNC CS.

Constraints

None.

See Also

MPCS_enter ()

7.3.9.1 OS specific Implementations

PROS:

Page 38 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

GPP side

• Signal mutex to be available for other tasks by calling SYNC_SignalSEM.

The parameter to this function is mpcsHandle->dspMpcsObj.localLock.

which was update in MPCS_enter Module.

DSP side:

• Signal mutex to be available for other tasks by calling LCK_post().

� Enter SWI mode.

GPP side:

• Priority Ceiling: Restore back the priority of the calling task to its original

value by calling chg_pri() API.

DSP side:

• To enable all the software interrupts, call SWI_enable().

Page 39 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8 Internal Discussions

8.1 IDM module

The ID Manager (IDM) module provides the functionality for acquiring and releasing

IDs for different objects identified based on a unique key provided by the caller. The

range of supported IDs for an IDM object is specified by the user while creating the

IDM object. Each ID within an IDM object is also associated with an idKey of string

type. If the idKey specified while acquiring an ID is already present, the ID

associated with this string idKey is returned. Otherwise a new ID is acquired and

associated with this idKey. While releasing the ID, reference count is used to free the

ID only when all references to it are closed.

The IDM component is present on the kernel-side for OSes such as Linux and is part

of the GEN module.

8.1.1 Constants & Enumerations

8.1.1.1 MAX_IDM_OBJECTS

This constant denotes the maximum number of objects supported by the IDM

component.

Definition

#define MAX_IDM_OBJECTS 32

Comments

None.

Constraints

None.

See Also

IDM_State

8.1.1.2 IDM_INVALID_KEY

This constant denotes an invalid key used for identifying the IDM object.

Definition

#define IDM_INVALID_KEY (Uint32) -1

Comments

None.

Constraints

None.

See Also

IDM_create ()

Page 40 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.1.2 Typedefs & Data Structures

8.1.2.1 IDM_Attrs

This structure defines the attributes for creation of the IDM object.

Definition

typedef struct IDM_Attrs_tag {

 Uint16 baseId ;

 Uint16 maxIds ;

} IDM_Attrs ;

Fields

baseId Base ID supported by this IDM object.

maxIds Maximum number of IDs supported by this IDM objects.

Comments

The IDM attributes are specified by the user while creating the IDM object. They

define the characteristics of the object including the range of IDs supported.

Constraints

None.

See Also

IDM_create ()

8.1.2.2 IDM_Id

This structure defines the IDM ID identified by a unique ID key per IDM object.

Definition

typedef struct IDM_Id_tag {

 Char8 idKey [DSP_MAX_STRLEN] ;

 Uint16 refCount ;

} IDM_Id ;

Fields

idKey ID key associated with the ID to be returned.

refCount
Reference count indicating the number of clients that have

acquired this ID.

Comments

The IDM object contains all information required to identify and perform ID acquire

and release functionality.

Constraints

None.

Page 41 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

See Also

IDM_create ()

8.1.2.3 IDM_Object

This structure defines the IDM object identified by a unique key.

Definition

typedef struct IDM_Object_tag {

 Uint32 key ;

 Uint16 baseId ;

 Uint16 maxIds ;

 IDM_Id * idArray ;

} IDM_Object ;

Fields

key Unique key identifying the IDM object.

baseId Base ID supported by this IDM object.

maxIds Maximum number of IDs supported by this IDM objects.

idArray

Dynamically allocated array of ID objects indicating acquired

and released IDs. The value of the ID is its index in the array
added to the base ID.

Comments

The IDM object contains all information required to identify and perform ID acquire

and release functionality.

Constraints

None.

See Also

IDM_create ()

8.1.2.4 IDM_State

This structure defines the state object for the IDM component.

Definition

typedef struct IDM_State_tag {

 Bool isInitialized ;

 IDM_Object idmObjs [MAX_IDM_OBJECTS] ;

} IDM_State ;

Fields

isInitialized Indicates whether the IDM component is initialized.

idmObjs Array of IDM objects.

Page 42 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

Comments

The IDM state object contains the global information required for the IDM

component.

Constraints

None.

See Also

IDM_init ()

Page 43 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.1.3 API Definition

8.1.3.1 IDM_init

This function initializes the IDM component.

Syntax

DSP_STATUS IDM_init (Void) ;

Arguments

None.

Return Value

DSP_SOK Operation successfully completed.

DSP_EFAIL General failure.

Comments

This function initializes the global IDM state object.

Constraints

None.

See Also

IDM_exit ()

Page 44 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.1.3.2 IDM_exit

This function finalizes the IDM component.

Syntax

DSP_STATUS IDM_exit (Void) ;

Arguments

None.

Return Value

DSP_SOK Operation successfully completed.

DSP_EFAIL General failure.

Comments

This function finalizes the global IDM state object.

Constraints

None.

See Also

IDM_init ()

Page 45 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.1.3.3 IDM_create

This function creates an IDM object identified based on a unique key specified by the

user.

Syntax

DSP_STATUS IDM_create (Uint32 key, IDM_Attrs * attrs) ;

Arguments

IN Uint32 key

Unique key used to identify the IDM object created.

IN IDM_Attrs * attrs

Attributes for creation of the IDM object.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_ERESOURCE All IDM objects have been used.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Get a free slot in the IDM objects array in the state object. The free slot is

identified based on key value of IDM_INVALID_KEY.

� Initialize the object based on attributes provided by the user and set its key to

the user-provided key.

� Allocate the ID array in the object of size maxIds and initialize the idKey and

refCount for all IDs to indicate that they are free to be acquired.

Constraints

None.

See Also

IDM_delete ()

Page 46 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.1.3.4 IDM_delete

This function deletes an IDM object identified based on a unique key specified by the

user.

Syntax

DSP_STATUS IDM_delete (Uint32 key) ;

Arguments

IN Uint32 key

Unique key used to identify the IDM object being deleted.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_ENOTFOUND Object corresponding to specified key not found.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Identify the object to be deleted in the IDM objects array in the state object

based on the specified key.

� Free the ID array in the object.

� Reset all other fields in the object and reset the key to IDM_INVALID_KEY to

indicate the freed object.

Constraints

None.

See Also

IDM_create ()

Page 47 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.1.3.5 IDM_acquireId

This function acquires a free ID for the specified IDM object.

Syntax

DSP_STATUS IDM_acquireId (Uint32 key, Pstr idKey, Uint32 * id) ;

Arguments

IN Uint32 key

Unique key used to identify the IDM object.

IN Pstr idKey

String key to associate with the ID to be returned. If the specified idKey

already exists for the IDM object, the id for this idKey is returned and a

reference count incremented. If the idKey does not exist, a new id is

acquired and returned for this idKey.

OUT Uint32 * id

Location to receive the ID being acquired.

Return Value

DSP_SOK Operation successfully completed.

DSP_SEXISTS The specified idKey already exists and its ID is

returned.

DSP_EINVALIDARG Invalid argument.

DSP_ENOTFOUND Object corresponding to specified key not found.

DSP_ERESOURCE All IDs for this object have been consumed.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Identify the object in the IDM objects array in the state object based on the

specified key.

� Check if the specified idKey already exists. If found, increase the reference count

for the ID and return its value (index in the array + baseId for the object).

� If the idKey does not exist, find a free ID within the ID array based on the idKey.

Initialize the idKey to specified value, set its reference count to 1 and return the

value of the ID.

� If no free ID is found (all IDs have been used up), return error.

Constraints

None.

Page 48 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

See Also

IDM_releaseId ()

Page 49 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.1.3.6 IDM_releaseId

This function releases the specified ID for the specified IDM object.

Syntax

DSP_STATUS IDM_releaseId (Uint32 key, Uint32 id) ;

Arguments

IN Uint32 key

Unique key used to identify the IDM object.

IN Uint32 id

ID to be released.

Return Value

DSP_SOK Operation successfully completed.

DSP_SFREE The last release for specified ID resulted in it getting

freed.

DSP_EINVALIDARG Invalid argument.

DSP_ENOTFOUND Object corresponding to specified key not found.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Identify the object in the IDM objects array in the state object based on the

specified key.

� Calculate the index of the ID within the array (Specified ID – baseId for the

object).

� Decrement the reference count of the ID and check if it needs to be released.

� If the reference count reaches zero, release the ID in the array by resetting its

idKey.

Constraints

None.

See Also

IDM_releaseId ()

Page 50 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.2 SYNC_USR module

The SYNC_USR module provides the functionality for user-side protection between

multiple processes. It gives a standard set of APIs across multiple OSes such as

Linux and PrOS. On Linux, it uses the System V semaphores, and on PrOS, it uses

the OSAL implementation using mutex.

8.2.1 Constants & Enumerations

None.

8.2.2 Typedefs & Data Structures

8.2.2.1 SYNC_USR_CsObject

This structure defines the user-side critical section object. The definition of the

structure is OS-specific.

Definition

typedef struct SYNC_USR_CsObject_tag SYNC_USR_CsObject ;

Comments

This object contains all information used for identifying and operating on the user-

side critical section object.

For Linux, the definition is:

struct SYNC_USR_CsObject_tag {

 int osSemId ;

 Uint32 semId ;

 Uint32 refCount ;

} ;

For PrOS, the OSAL SYNC CS object is directly used. The definition is:

typedef SyncCsObject SYNC_USR_CsObject_tag ;

Constraints

None.

See Also

_SYNC_USR_createCS ()

8.2.2.2 SYNC_USR_State

This structure defines the state object for the SYNC_USR component.

Definition

typedef struct IDM_State_tag {

 Bool isInitialized ;

 SYNC_USR_CsObject csObjs [MAX_SYNC_CS] ;

} IDM_State ;

Fields

isInitialized Indicates whether the SYNC_USR component is initialized.

Page 51 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

idmObjs Array of pointers to SYNC_USR_CsObject objects.

Comments

The SYNC_USR state object contains the global information required for the

SYNC_USR component.

Constraints

None.

See Also

_SYNC_USR_init ()

Page 52 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.2.3 API Definition

8.2.3.1 _SYNC_USR_init

This function initializes the SYNC_USR component.

Syntax

DSP_STATUS _SYNC_USR_init () ;

Arguments

None.

Return Value

DSP_SOK Operation successfully completed.

DSP_EFAIL General failure.

Comments

The implementation of this function varies depending on the operating system.

For PrOS, this function performs the following operations:

� Create an IDM object for the CS objects based on a key used for the SYNC CS

component.

� Initialize the SYNC_USR state object.

For Linux, this function performs the following operations:

� Initialize the SYNC_USR state object.

� Get a unique key value using the ftok call. The key is based on a filename

(/dev/dsplink) and a string indicating usage for Critical Section objects.

� Create a semaphore set based on the unique key using the semget API.

� Create an IDM object for the CS objects based on a key used for the SYNC CS

component.

Constraints

None.

See Also

_SYNC_USR_exit ()

Page 53 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.2.3.2 _SYNC_USR_exit

This function finalizes the SYNC_USR component.

Syntax

DSP_STATUS _SYNC_USR_exit () ;

Arguments

None.

Return Value

DSP_SOK Operation successfully completed.

DSP_EFAIL General failure.

Comments

The implementation of this function varies depending on the operating system.

For PrOS, this function performs the following operations:

� Finalize the SYNC_USR state object.

� Delete the IDM object created for the CS objects based on the key used for the

SYNC CS component.

For Linux, this function performs the following operations:

� Delete the IDM object created for the CS objects based on the key used for the

SYNC CS component.

� Get a unique key value using the ftok call. The key is based on a filename

(/dev/dsplink) and a string indicating usage for Critical Section objects.

� Get the semaphore ID based on the unique key using the semget API.

� Delete the semaphore set corresponding to the semaphore ID using the semctl

API with IPC_RMID command.

Constraints

None.

See Also

_SYNC_USR_init ()

Page 54 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.2.3.3 _SYNC_USR_createCS

This function creates the Critical section object.

Syntax

DSP_STATUS

_SYNC_USR_createCS (Pstr idKey, SYNC_USR_CsObject ** csObj) ;

Arguments

IN Pstr idKey

String key to identify the CS being created. If a CS with the specified

key has been created, a handle to the same CS is returned to provide

protection between multiple processes. If a CS corresponding to

specified key does not exist, a new object is created and returned to the
user.

OUT SYNC_USR_CsObject ** csObj

Location to receive the pointer to created critical section object.

Return Value

DSP_SOK Operation successfully completed.

DSP_SEXISTS Semaphore corresponding to the specified idKey

already exists, and is returned.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EPOINTER Invalid pointer passed.

DSP_EFAIL General failure.

Comments

The implementation of this function varies depending on the operating system. For

PrOS, this function performs the following operations:

� Check if a new object is being created, or a handle to existing object is to be

returned by acquiring the ID corresponding to the specified idKey.

� If the ID already exists (indicated by return code DSP_SEXISTS), return the

handle to existing CS object at the acquired ID.

� Otherwise create a new semaphore by making a call to the OSAL SYNC CS API

and set its handle within the state object for the acquired ID.

For Linux, this function performs the following operations:

� Get the ID corresponding to the specified idKey by making a call to the IDM

component to acquire the ID. Return code of DSP_SEXISTS indicates that the

semaphore is being created for the first time.

� Get a unique key value using the ftok call. The key is based on a filename

(/dev/dsplink) and a string indicating usage for Critical Section objects.

� Get the semaphore ID based on the unique key using the semget API.

Page 55 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

� If the semaphore is being created for the first time, initialize the semaphore for

the unique ID to 1 as initially available.

� Check if the semaphore has been already created in this process by checking for

a set handle in the csObjs array in the state object. If yes, return the same

handle after incrementing the reference count for the semaphore.

� If the semaphore has not been created in this process, allocate memory for a

new SYNC_USR_CsObject. Initialize the semaphore fields.

Constraints

None.

See Also

_SYNC_USR_deleteCS ()

Page 56 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.2.3.4 _SYNC_USR_deleteCS

This function creates the Critical section object.

Syntax

DSP_STATUS _SYNC_USR_deleteCS (SYNC_USR_CsObject ** csObj) ;

Arguments

IN OUT SYNC_USR_CsObject ** csObj

Address of the location containing the pointer to the critical section

object. The pointer may be reset on successful return from the function,
based on whether the object was deleted.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL General failure.

Comments

The implementation of this function varies depending on the operating system. For

PrOS, this function performs the following operations:

� Search for the specified csObj in array of existing CS objects to get its ID.

� Release the ID for the CS object from kernel-side ID manager based on the key

used for the SYNC CS component and this ID.

� If the status of IDM_release () indicates that the last reference to the semaphore

is being closed (return status of DSP_SFREE), make a call to the OSAL SYNC CS

API to delete the CS object. Free the memory for the SYNC_USR_CsObject and

reset the user pointer. Reset the handle for the semaphore object within the

state object.

For Linux, this function performs the following operations:

� Release the ID for the CS object from kernel-side ID manager based on the key

used for the SYNC CS component and ID stored within the SYNC_USR_CsObject.

� Decrement the reference count for the semaphore. If the reference count reaches

zero, free the memory for the SYNC_USR_CsObject and reset the user pointer.

Reset the handle for the semaphore object within the state object.

Constraints

None.

See Also

_SYNC_USR_createCS ()

Page 57 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.2.3.5 _SYNC_USR_enterCS

This function enters the critical section that is passed as an argument to it. After

successful return of this function no other process can enter until this process exits

the CS.

Syntax

DSP_STATUS _SYNC_USR_enterCS (SYNC_USR_CsObject * csObj) ;

Arguments

IN SYNC_USR_CsObject * csObj

Pointer to the critical section object to be entered.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL General failure.

Comments

The implementation of this function varies depending on the operating system. For

PrOS, this function performs the following operations:

� Make a call to the OSAL SYNC CS API to enter the CS.

For Linux, this function performs the following operations:

� Enter the critical section using the semop API.

Constraints

None.

See Also

_SYNC_USR_leaveCS ()

Page 58 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.2.3.6 _SYNC_USR_leaveCS

This function makes the critical section available for other processes to enter.

Syntax

DSP_STATUS _SYNC_USR_leaveCS (SYNC_USR_CsObject * csObj) ;

Arguments

IN SYNC_USR_CsObject * csObj

Pointer to the critical section object to be released.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL General failure.

Comments

The implementation of this function varies depending on the operating system. For

PrOS, this function performs the following operations:

� Make a call to the OSAL SYNC CS API to leave the CS.

For Linux, this function performs the following operations:

� Leave the critical section using the semop API.

Constraints

None.

See Also

_SYNC_USR_leaveCS ()

Page 59 of 59 Version

1.65.00.02

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Texas Instruments Proprietary Information

8.3 MPCS API flow

It is assumed that the usage of the api’s is in correct sequence i.e. MPCS_enter is

called after MPCS_open etc. Checks have been placed to ensure pre-conditions for

most API’s are true at the time of calling the API.

Consider the following case:

Invoking MPCS_enter() twice in a sequence shows different behaviors on GPP/DSP.

In order to verify that the same process does not call MPCS_enter in a sequence

without calling MPCS_leave, the following changes need to be made on the GPP side.

The SYNC module needs to be updated to capture book keeping information about

the process and thread id (in case of Linux) and task id(in case of PROS). This book

keeping information has to be updated every time a process calls MPCS_enter and

MPCS_leave.

It is an overkill to do this for a boundary condition. It is assumed that the user of the

API does not call MPCS_enter twice in a sequence without calling MPCS_leave.

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Requirements
	Assumptions
	Constraints
	MPCS High Level Design
	Introduction
	Current MPCS design Issues
	Global priority inversion:
	Deadlock situation:
	MPCS Deadlock scenario:

	MPCS Bug details
	MPCS Bug ID:
	MPCS BUG details

	Design Goals
	Code Flow
	Introduction

	MPCS Re-Design Solutions.
	Level 1 Protection for Message Queues:
	ARM side:
	DSP Side:

	MPCS -OS Dependent design implementation.

	Sequence Diagrams
	Low level design
	Constants & Enumerations
	MPCS_NUMENTRIES
	MPCS_TABLE_SIZE
	MPCS_INVALID_ID
	MPCS_RESV_LOCKNAME
	MPCS_RESV_LOCKNAMELEN

	Typedefs & Data Structures
	MPCS_Attrs
	MPCS_Entry
	MPCS_Ctrl
	MPCS_ProcObj
	MPCS_ShObj
	MPCS_Obj
	MPCS_MemInfo

	API Definition
	_MPCS_init
	_MPCS_exit
	MPCS_create
	OS specific Implementations

	MPCS_delete
	OS specific Implementations

	MPCS_open
	_MPCS_open
	MPCS_close
	MPCS_enter
	OS specific Implementations

	MPCS_leave
	OS specific Implementations

	Internal Discussions
	IDM module
	Constants & Enumerations
	MAX_IDM_OBJECTS
	IDM_INVALID_KEY

	Typedefs & Data Structures
	IDM_Attrs
	IDM_Id
	IDM_Object
	IDM_State

	API Definition
	IDM_init
	IDM_exit
	IDM_create
	IDM_delete
	IDM_acquireId
	IDM_releaseId

	SYNC_USR module
	Constants & Enumerations
	Typedefs & Data Structures
	SYNC_USR_CsObject
	SYNC_USR_State

	API Definition
	_SYNC_USR_init
	_SYNC_USR_exit
	_SYNC_USR_createCS
	_SYNC_USR_deleteCS
	_SYNC_USR_enterCS
	_SYNC_USR_leaveCS

	MPCS API flow

